Low-pay persistence over the life-cycle

NZWRI Research Seminar

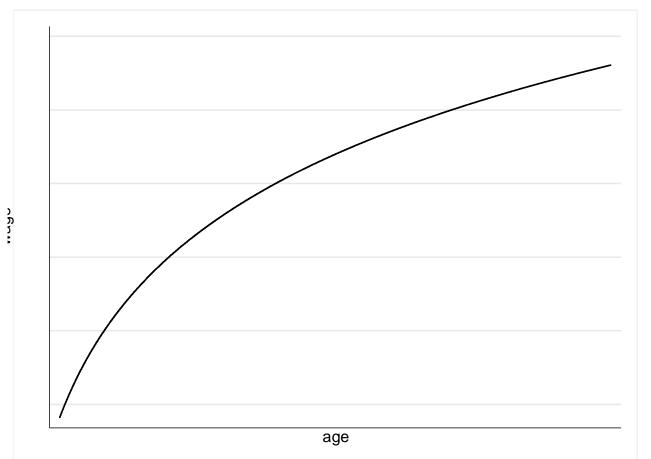
19/03/2020

Kabir Dasgupta - Alexander Plum

NEW ZEALAND WORK RESEARCH INSTITUTE

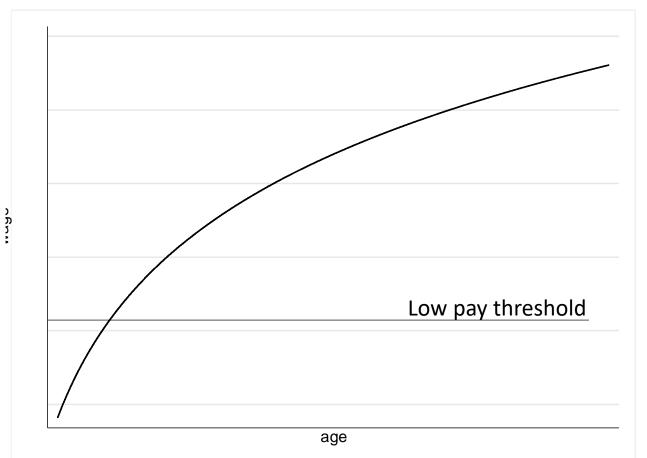
Statistics NZ Disclaimer:

- Access to the data used in this study was provided by Statistics New Zealand under conditions designed to give effect to the security and confidentiality provisions of the Statistics Act 1975.
- The results presented in this study are the work of the authors, not of Statistics NZ.


Motivation:

- Studies on low-pay dynamics:
 - Persistence vs stepping-stone
 - ➢ How findings differ according to age
- Trying to answer the following two questions:
 - > Why do we expect an age effect?
 - > Which direction?

Motivation:


- Studies on low-pay dynamics:
 - Persistence vs stepping-stone
 - ➢ How findings differ according to age
- Trying to answer the following two questions:
 - > Why do we expect an age effect?
 - > Which direction?

Why do we expect an age effect?

NZWRI Research Seminar (19/03/2020)

Why do we expect an age effect?

1. Background

Why do we expect an age effect?

- Younger worker: lower wage but higher wage growth rate:
 - ➤ More likely to be affected by low pay
 - Extensively: higher share who work in the low-pay sector
 - Intensively: stronger attachment to the low-pay sector

Higher wage growth rate facilities exiting the low pay sector Which direction?

➢ Based on wage growth rate: persistence should increase in age

1. Background

Why do we expect an age effect?

- Younger worker: lower wage but higher wage growth rate:
 - ➤ More likely to be affected by low pay
 - Extensively: higher share who work in the low-pay sector
 - Intensively: stronger attachment to the low-pay sector
- ➢ Higher wage growth rate facilities exiting the low pay sector Which direction?
 - ➢ Based on wage growth rate: persistence should increase in age

Economic literature:

- Lagged dependent variable (binary indicator): indicator on low pay for a specific time point:
 - homogeneous across ages
 - ➤ independent of the degree of low pay attachment
- Age as covariate: level effect on low pay risk

What is the data requirement?

Model	Notes
Model (1): Aggregated sample with lagged dependent variable	 Average across birth cohorts and low pay attachment Positive relationship between birth cohort and low pay persistence

What is the data requirement?

Model	Notes
Model (1): Aggregated sample with lagged dependent variable	 Average across birth cohorts and low pay attachment Positive relationship between birth cohort and low pay persistence
Model (2): Birth cohort sample with lagged dependent variable	 Average across low pay attachment Binary indicator on low pay intensifies the relationship found above

What is the data requirement?

Model	Notes
Model (1): Aggregated sample with lagged dependent variable	 Average across birth cohorts and low pay attachment Positive relationship between birth cohort and low pay persistence
Model (2): Birth cohort sample with lagged dependent variable	 Average across low pay attachment Binary indicator on low pay intensifies the relationship found above
Model (3): Birth cohort sample with low pay intensity	• Negative relationship between birth cohort and low pay persistence

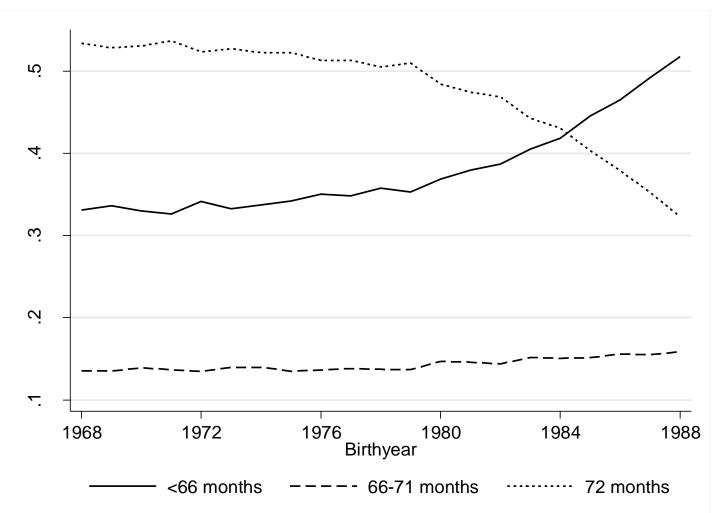
Measuring the age effect

- Birth cohort specific regressions
 - Average partial effect of low pay persistence
 - > Age trend across all birth cohorts
- Two types of models:
 - Base model that uses a binary indicator on low pay for a specific month in the previous years
 - Intensity model that uses the number of low paid months in the previous year

Findings: Age trend in average partial effects

	Birth cohort regression	Aggregated regression
Variable		Base model
		Model (1)
Birthyear		0.0024727*** (0.0003125)

Findings: Age trend in average partial effects

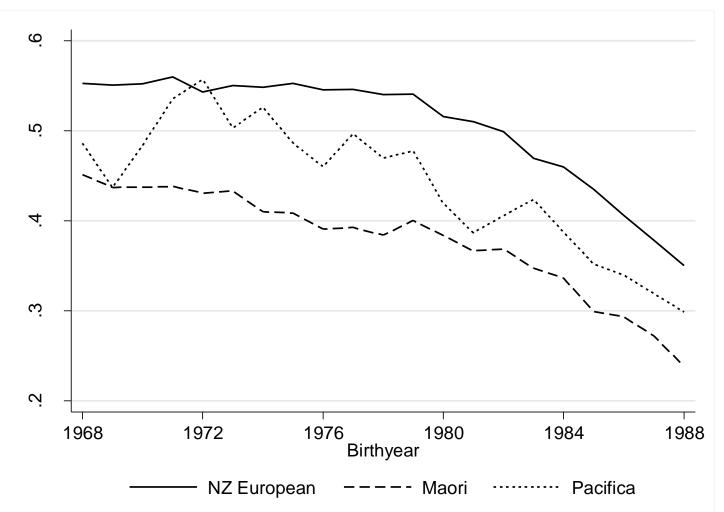

	Birth cohort regression	Aggregated regression
Variable	Base model	Base model
	Model (2)	Model (1)
Birthyear	0.0048558*** (0.0007151)	0.0024727*** (0.0003125)

Findings: Age trend in average partial effects

	Birth cohor	Birth cohort regression		
Variable	Base model	Base modelIntensity modelModel (2)Model (3)		
	Model (2)			
Birthyear	0.0048558*** (0.0007151)	-0.0022166*** (0.000398)	0.0024727*** (0.0003125)	

Data:

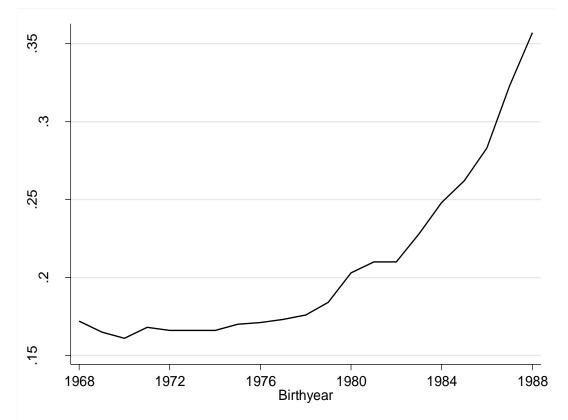
- Three different data sets:
 - (1) birth record data from the Department of Internal Affairs (DIA),
 - (2) tax data from Inland Revenue (IR)
 - (3) the 2013 Census survey
- Male birth cohorts born in New Zealand between 1968 and 1988
- Ethnicity: NZ European, Māori and Pacific peoples (prioritized)
- Linking with IR income: January 2013 to December 2018
- Linking with the 2013 Census


Distribution on months receiving income from wages and salaries

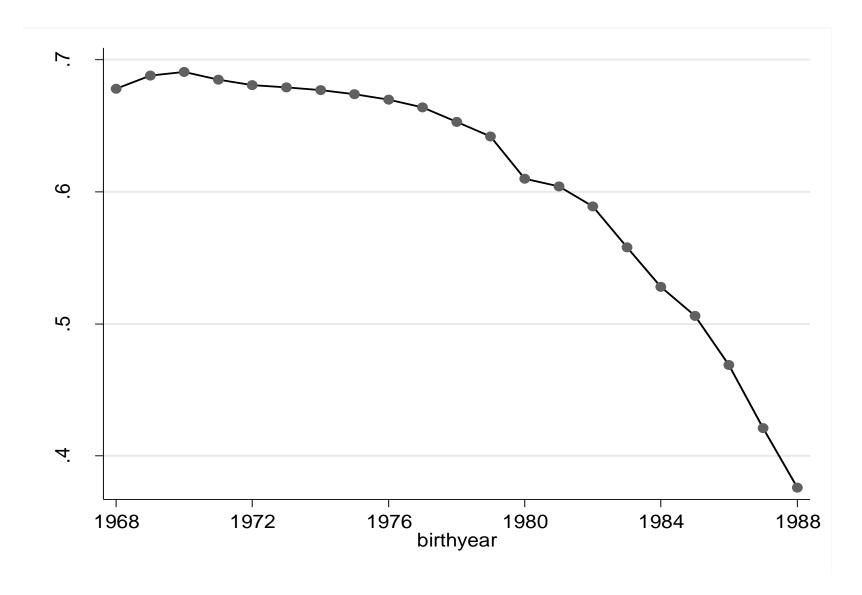
Data:

- Trimming to continuously employed
- Reduced sample is not a random subsample

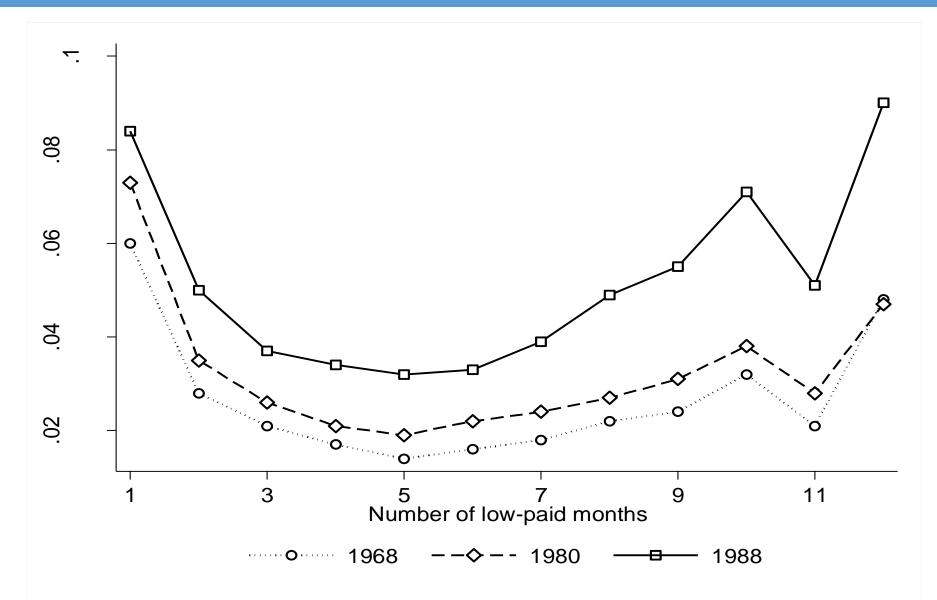
Ethnic specific share of continuously employed


NZWRI Research Seminar (19/03/2020)

Kabir Dasgupta - Alexander Plum

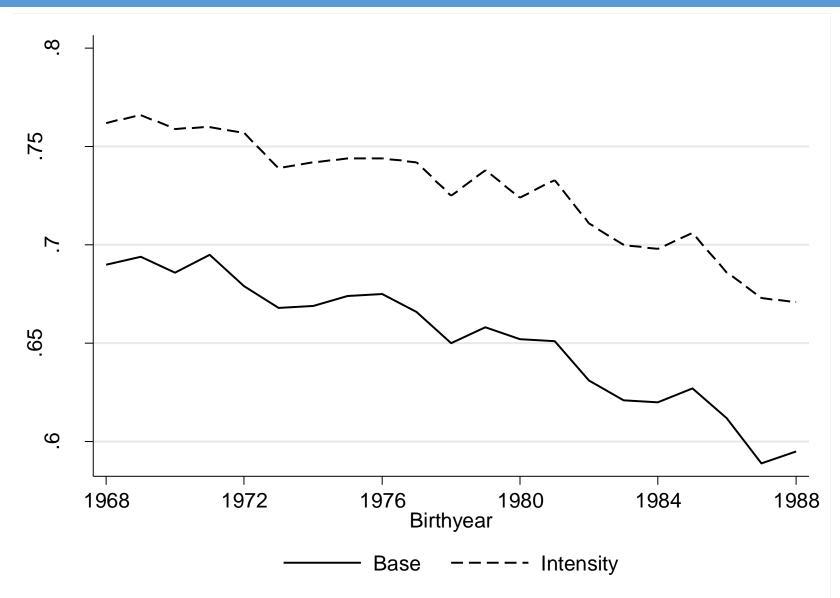


Data:


• Defining low pay (monthly basis): belongs to the lowest second percentile

NZWRI Research Seminar (19/03/2020)

NZWRI Research Seminar (19/03/2020)


Birthyear	Mean	Std. Dev.
1968	0.00293	0.00215
1969	0.00306	0.00219
1970	0.00322	0.00222
1971	0.00322	0.00221
1972	0.00333	0.00223
1973	0.00341	0.00231
1974	0.00350	0.00238
1975	0.00365	0.00242
1976	0.00374	0.00239
1977	0.00385	0.00249
1978	0.00401	0.00260
1979	0.00421	0.00258
1980	0.00430	0.00264
1981	0.00449	0.00261
1982	0.00460	0.00272
1983	0.00482	0.00275
1984	0.00512	0.00286
1985	0.00529	0.00295
1986	0.00560	0.00308
1987	0.00606	0.00322
1988	0.00635	0.00339

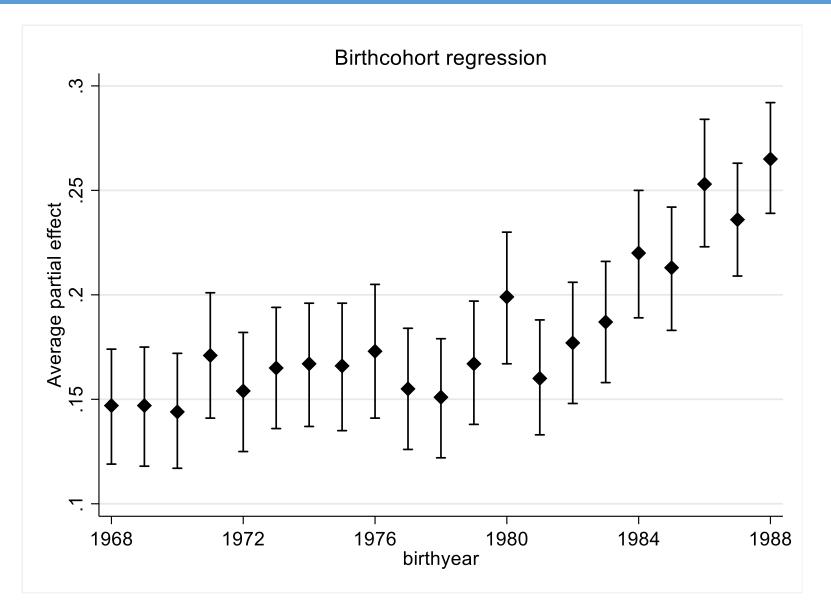
	Number of employer			
Birthyear	1	2	3	4 and more
1968	57.9	24.6	10.4	7.1
1969	58.2	24.5	10.3	7.0
1970	57.1	25.1	10.3	7.5
1971	56.2	25.6	10.7	7.6
1972	55.7	26.2	10.4	7.7
1973	55.3	25.9	11.1	7.8
1974	53.6	26.7	11.8	7.9
1975	52.0	26.7	12.3	9.1
1976	52.1	27.3	11.8	8.9
1977	51.4	27.1	12.5	9.1
1978	50.1	28.1	12.2	9.6
.979	47.8	29.2	13.2	9.7
1980	47.9	28.1	12.8	11.2
1981	46.9	28.7	13.3	11.1
.982	45.3	29.8	14.0	10.9
1983	44.2	29.1	14.3	12.5
1984	42.6	30.2	14.7	12.6
1985	40.8	29.5	15.6	14.1
.986	40.0	29.5	16.1	14.5
1987	37.2	29.6	17.3	15.9
1988	35.1	29.4	18.2	17.3

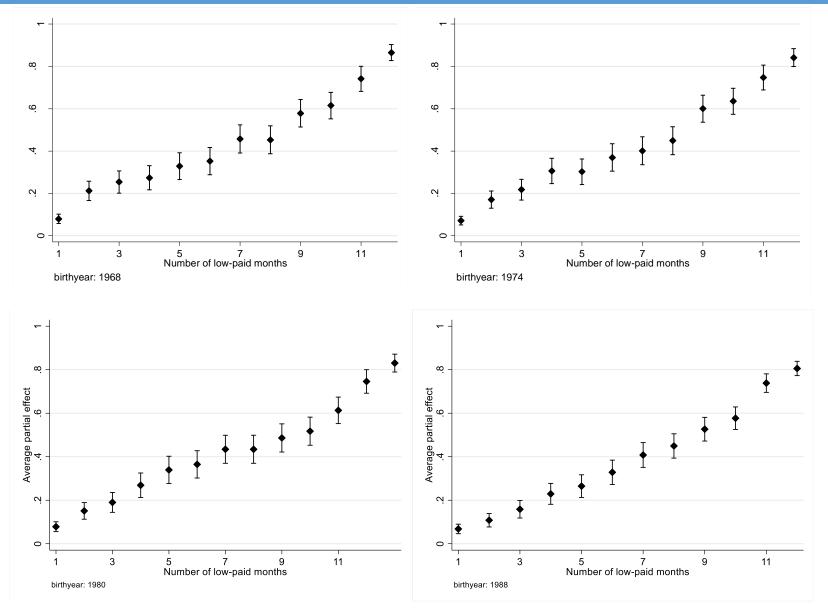
NZWRI Research Seminar (19/03/2020)

Two marker:

- The **base** model, which refers to being observed as on low pay in October of year y and y+1
- The **intensity** model, which refers to the number of low-paid months in year y and being on low pay in October of year y+1

NZWRI Research Seminar (19/03/2020)

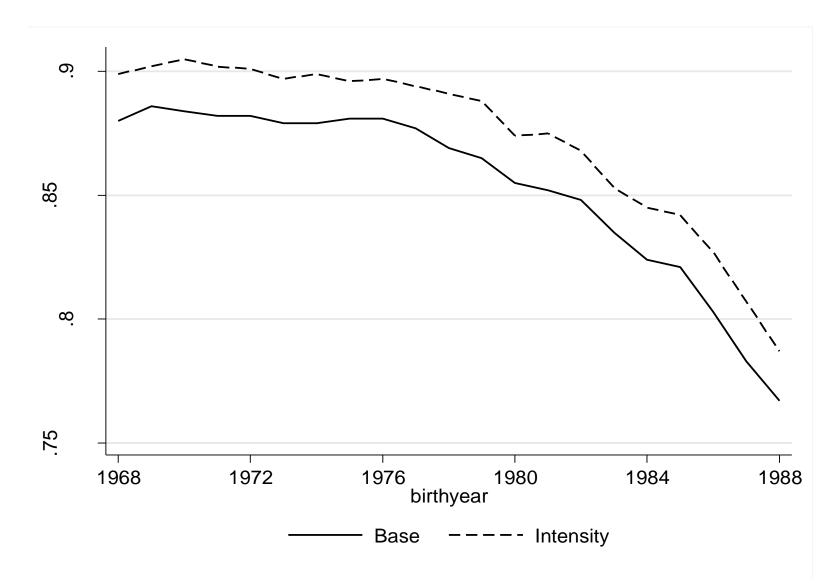

Econometric specification:


- Dependent variable: low-paid employed in October
- Covariates: highest qualification, the legal marital status, their smoking behavior, the number of adults and children living in their household, the location of the residence (rural/urban identifier and whether on the North or South Island), receiving benefits, receiving ACC
- Birth cohort specific regressions
- Two specifications:
 - Basic: Low pay in October past year/first year
 - > Intensity: # of low paid months in the previous year/initial year
- RE probit to control for unobserved heterogeneity

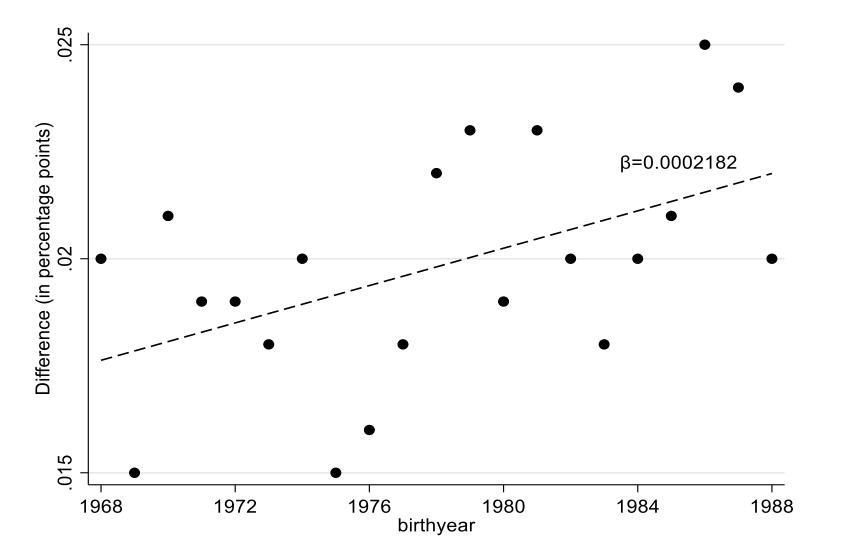
4. Empirical application – probability being on low pay

	Base Model		Intens	ity Model
Birthyear	Mean	Std Dev	Mean	Std Dev
1968	0.162	0.227	0.150	0.273
1969	0.155	0.224	0.144	0.270
1970	0.149	0.214	0.140	0.264
1971	0.154	0.221	0.144	0.268
1972	0.152	0.215	0.142	0.267
1973	0.153	0.210	0.142	0.258
1974	0.152	0.206	0.142	0.260
1975	0.154	0.216	0.143	0.261
1976	0.156	0.216	0.145	0.263
1977	0.157	0.213	0.146	0.263
1978	0.157	0.202	0.146	0.257
1979	0.165	0.210	0.152	0.267
1980	0.183	0.220	0.169	0.272
1981	0.189	0.221	0.172	0.279
1982	0.187	0.208	0.170	0.268
1983	0.203	0.211	0.183	0.271
1984	0.216	0.217	0.197	0.281
1985	0.224	0.218	0.202	0.285
1986	0.242	0.218	0.218	0.285
1987	0.271	0.216	0.240	0.294
1988	0.296	0.218	0.262	0.299

NZWRI Research Seminar (19/03/2020)



NZWRI Research Seminar (19/03/2020)


Kabir Dasgupta - Alexander Plum

	Birthcohort regression			
Variable	Base model	Intensity model		
	Oct	Jan-Dec	w/o Nov/Dec	
Number of low-		0.0636322***	0.0682892***	
paid months	-	(0.0006981)	(0.0008516)	
Birthyear	0.0048558***	-0.0022166***	-0.0022008***	
	(0.0007151)	(0.000398)	(0.0004039)	

	Birthcohort regression			Aggregated regression	
Variable	Base model	Intensity model		Base model	Intensity model
	Oct	Jan-Dec w/o Nov/Dec		Oct	Jan-Dec
Number of low- paid months	-	0.0636322^{***} (0.0006981)	0.0682892*** (0.0008516)	-	0.0638629^{***} (0.0006054)
Birthyear	0.0048558*** (0.0007151)	-0.0022166*** (0.000398)	-0.0022008*** (0.0004039)	0.0024727*** (0.0003125)	0.0001827 (0.0003452)

NZWRI Research Seminar (19/03/2020)

NZWRI Research Seminar (19/03/2020)

	Base		Inter	nsity
Birthyear	λ	Std Err	λ	Std Err
1968	0.471	0.019	0.034	0.015
1969	0.471	0.020	0.013	0.015
1970	0.484	0.019	0.017	0.015
1971	0.437	0.020	0.025	0.015
1972	0.449	0.020	0.005	0.015
1973	0.433	0.020	0.034	0.015
1974	0.448	0.020	0.017	0.015
1975	0.427	0.021	0.047	0.016
1976	0.412	0.021	0.020	0.016
1977	0.446	0.020	0.012	0.016
1978	0.463	0.020	0.056	0.017
1979	0.439	0.020	0.018	0.016
1980	0.391	0.020	0.037	0.016
1981	0.457	0.020	0.036	0.016
1982	0.424	0.020	0.055	0.016
1983	0.411	0.020	0.039	0.016
1984	0.366	0.020	0.010	0.015
1985	0.395	0.020	0.045	0.016
1986	0.340	0.020	0.052	0.015
1987	0.344	0.019	0.022	0.014
1988	0.342	0.019	0.073	0.015

NZWRI Research Seminar (19/03/2020)

5. Conclusion

Conclusion:

- Higher share of low pay employment among young worker
- Low pay attachment is also stronger among young worker
- However: wage growth is also higher
- Controlling for both aspects in birth cohort specific regressions reveals a positive association between age and low pay persistence

Low-pay persistence over the life-cycle

Thank you for your attention!!!

NZWRI Research Seminar (19/03/2020)