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Motivation

• Science, technology, engineering, and mathematics

• Production of STEM degrees often set as policy priority at 
university-, state-, and national-levels

• Merit-based scholarships: do renewal requirements 
discourage students from pursuing more difficult majors, such 
as STEM?

– If so, this is an important unintended consequence of such 
programs
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Motivation

• Since 1991, 27 US states have launched broad-based 
merit scholarship programs

– New Mexico Legislative Lottery Scholarship (NMLLS) in fall 1997

• Programs generally reward in-state students with “free” 
college provided they meet certain eligibility criteria

– Results inform recent proposals to make college “free” for 
Americans earning under $125,000 (Cf. NY’s Excelsior 
Scholarship)
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Background
• The most generous broad-based merit scholarship in the US 

(recent changes here)

– No high school achievement requirement

– Graduate from a NM high school, and enroll in one of the 16 
qualified public institutions in the next academic year

– Eligible after completing 12 hours in first semester with 2.5 GPA 
at any public college (using the Bridge to Success Scholarship)

– Continued eligibility: 12 credit hours each term, maintain 2.5 
cumulative GPA for up to 8 semesters after successful first 
semester

– More background here
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Literature

• Not in agreement; approaches are very different…

– Cornwell et al. (2006) analyze GA HOPE using admin. data, 
finding no overall change in declaring STEM majors

– Zhang (2011) uses IPEDS data, examining GA and FL, finding 
little evidence of change in majoring in STEM

– Stater (2011) uses admin. data from three large public 
universities, finding that merit aid results in increased STEM 
major choice
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Literature

• Most cited/revered paper in this literature:

– JOLE: Sjoquist and Winters (2015) use CPS data, finding that 
state merit-based aid programs reduce STEM production by 
6.5%

– Examines all 27 states with broad merit-based scholarships

– Treats state programs as homogeneous
• Program features vary widely across states
• Is one figure really helpful to policymakers?
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Literature

• Contribution to literature:

– Examines the effect of the broadest, lowest-bar state merit aid 
program on college major choice

– First paper to disaggregate how broad-based merit scholarships 
affect student engagement in STEM by academic preparation
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Preview of Findings

• No overall effect of the lottery scholarship on:
1. Choosing first major in STEM
2. Earning a degree in STEM

• Well-academically prepared students declare majors in STEM 
more often as a result of the scholarship

• Less prepared students from low-income families less likely to 
declare majors in STEM

• Challenges literature treating state merit-based aid programs 
as homogenous
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Theoretical Model
• Student i chooses major j if it maximizes expected lifetime utility, 

E(Uij):

𝐸𝐸(𝑈𝑈𝑖𝑖𝑖𝑖) = 𝑝𝑝𝑖𝑖𝑖𝑖 𝑿𝑿 𝑒𝑒𝑖𝑖𝑖𝑖 𝒁𝒁 + 1 − 𝑝𝑝𝑖𝑖𝑖𝑖 𝑿𝑿 𝑒𝑒𝑖𝑖𝑖 𝒁𝒁 , 𝑖𝑖 = 1, … ,𝑁𝑁; 𝑗𝑗 = 1, … ,𝑚𝑚,

Where:

eij : expected lifetime earnings from major j
pij : expected likelihood of scholarship retainment when choosing major j 
ei0 : expected earnings after losing scholarship and dropping out
X : factors influencing probability of scholarship retainment
Z : factors affecting earnings after college
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Theoretical Model
• Student chooses major j if

E(Uij) ≥ E(Uik) for all k ≠ j

• After some algebraic manipulation: 

𝑝𝑝𝑖𝑖𝑖𝑖 𝑿𝑿 𝑒𝑒𝑖𝑖𝑖𝑖 𝒁𝒁 − 𝑒𝑒𝑖𝑖𝑖𝑖 𝒁𝒁 + 𝑝𝑝𝑖𝑖𝑖𝑖 𝑿𝑿 − 𝑝𝑝𝑖𝑖𝑖𝑖(𝑿𝑿) 𝑒𝑒𝑖𝑖𝑖𝑖 𝒁𝒁 − 𝑒𝑒𝑖𝑖𝑖(𝒁𝒁) ≥ 0

• Theoretical implications of the model:

– When success probabilities are roughly equal, earnings differentials drive 
major choice

– When earnings differentials are roughly equal, success probabilities drive 
major choice
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Theoretical Model

𝑝𝑝𝑖𝑖𝑖𝑖 𝑿𝑿 𝑒𝑒𝑖𝑖𝑖𝑖 𝒁𝒁 − 𝑒𝑒𝑖𝑖𝑖𝑖 𝒁𝒁 + 𝑝𝑝𝑖𝑖𝑖𝑖 𝑿𝑿 − 𝑝𝑝𝑖𝑖𝑖𝑖(𝑿𝑿) 𝑒𝑒𝑖𝑖𝑖𝑖 𝒁𝒁 − 𝑒𝑒𝑖𝑖𝑖(𝒁𝒁) ≥ 0

• High academic preparation:

– Success probabilities are high for all majors, so those with highest 
expected earnings would be chosen (i.e., STEM)

• Earnings by major type here

• Low academic preparation:

– Success probabilities vary considerably across majors, as do earnings 
differentials, so choice of major is less clear
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Theoretical Model

𝑝𝑝𝑖𝑖𝑖𝑖 𝑿𝑿 𝑒𝑒𝑖𝑖𝑖𝑖 𝒁𝒁 − 𝑒𝑒𝑖𝑖𝑖𝑖 𝒁𝒁 + 𝑝𝑝𝑖𝑖𝑖𝑖 𝑿𝑿 − 𝑝𝑝𝑖𝑖𝑖𝑖(𝑿𝑿) 𝑒𝑒𝑖𝑖𝑖𝑖 𝒁𝒁 − 𝑒𝑒𝑖𝑖𝑖(𝒁𝒁) ≥ 0

• In the context of the lottery scholarship:

– Is the bar set so low for scholarship renewal that success probabilities 
will be high for most students, so that more students will choose 
STEM?

– Or, are scholarship renewal constraints binding, so that students will 
be less engaged in STEM fields?
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Data
• Administrative data on all first-time, full-time University of 

New Mexico (UNM) students over the period 1995 – 1999

• 10,381 students
– 9,281 residents (89%); 1,100 nonresidents (11%)

• Socio-demographics
– age, race, gender, ethnicity, family income

• High school performance
– HS GPA, ACT/SAT scores, required remedial coursework

• College performance
– Major choice, credits earned, grades, date of graduation
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Table 1.  Student majors before and after initiation of the NMLLS program, First Major 
Declared and Major of Degree Earned, ACS Major Codes, 1995-1999 

  Residents  Nonresidents 

Variable  Before After Diff.  Before After Diff. 

         
First Major Declared:         
      STEM   .246 .221 -.025***   .202 .150 -.052*  
      Liberal Arts  .161 .184  .023***  .221 .234  .013 
      Education   .088 .101  .013**   .069 .088  .019 
      Business  .079 .094  .015**  .064 .071  .007 
      Social Science   .113 .101 -.012*   .126 .116 -.010 
      Health-Related  .151 .114 -.037***  .128 .080 -.048*  
      Never Declared  .161 .183  .022***  .190 .261  .071**  
              
         
Degree Type Earned:         
      STEM  .108 .096 -.012*   .062 .056  -.006 
      Liberal Arts  .115 .100 -.015**  .114 .099  -.015 
      Education  .042 .032 -.010**   .021 .007  -.014* 
      Business  .075 .076  .001  .055 .046  -.009 
      Social Science  .073 .071 -.002   .057 .066   .009 
      Health-Related  .021 .025  .004  .012 .016   .004 

      Observations 
                   

2,741  
                

6,540                      
421  

                
679   

         
Source: Freshmen Tracking System, Office of Institutional Analytics, UNM. ***, **, and * represent 
statistical significance at the 1, 5, and 10 percent-levels, respectively.  Standard deviations are in parentheses. 
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Table 2.  Student characteristics before and after initiation of the NMLLS program, 1995-
1999 

  Residents  Nonresidents 

Variable  Before After Diff.  Before After Diff. 

         
HSGPA  3.342 3.272 -.070***  3.288 3.294 .006 
  (.502) (.472)   (.520) (.506)  
              
ACT  22.676 22.203 -.473***  22.583 22.903 .320 
  (3.869) (3.894)   (3.986) (4.103)  
              
Remedial  .233 .283 .050***  .140 .216 .076*** 
              
Income < $40K  .228 .203 -.025***  .164 .161 -.003 
              
Female  .565 .563 -.002  .525 .542 .017 
         
Hispanic  .388 .373 -.015  .183 .165 -.018 
         
Native  .042 .045 .003  .045 .050 .005 
         
Asian  .047 .037 -.010**  .043 .027 -.016* 
         
Black  .023 .023 < .001  .083 .080 -.003 

Observations 
                   

2,741  
                

6,540                      
421  

                
679   

              
Source: Freshmen Tracking System, Office of Institutional Analytics, UNM. ***, **, and * represent 
statistical significance at the 1, 5, and 10 percent-levels, respectively.  Standard deviations are in 
parentheses. 



Data
• Difference-in-differences (DD) models

– Residents are treatment, nonresidents are control

• Many observable differences between residents and 
nonresidents
– Not problematic as long as common trends assumption holds

• This is supported both visually and empirically
– Empirical tests of common trends assumption (here)
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Note: Residents are represented as the solid lines; nonresidents as dashed lines. 

Figure 1. Pre-post trends in first declaring a STEM major and earning a degree in STEM, 
1995 – 1999  
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Data

• Majors categorized into STEM/non-STEM according to 
U.S. Census Bureau’s American Community Survey (ACS) 

• As a robustness check, also used “broad” and narrow” 
classification UNM’s STEM Collaborative Center

– ACS definitions are preferred because they’re federally defined, 
sufficiently narrow, and are used in previous literature

– UNM STEM Collaborative Center definitions are problematic…
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Empirical Model

• Outcomes:
1. Initial STEM major
2. Earned STEM degree

• DD with kernel matching on the propensity score
– Help balance residents and nonresidents on observables

• Awkward to predict propensity of being a state resident
– All that matters is how well covariates are balanced (details 

here) 
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Empirical Model

• Propensity scores estimated via logistic model including:

– Cumulative high school GPA
– Composite ACT score
– Indicator of remedial college coursework
– Indicators for family income less than $20,000 and $40,000
– Gender
– Race and ethnicity
– Several interaction terms using selection criteria laid out in 

Imbens and Rubin (2015)
– Results here
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Empirical Model

• Kernel density matching is a one-to-many matching algorithm 
(more here)

• We choose it because we have significantly more treated units 
than control units (i.e., 8x as many)
– With a simple nearest neighbor match, we would at most be able to 

include 22 percent of the sample in the matching algorithm

• Choice of bandwidth is critical
– Higher includes more information (variance ↓), but also potentially 

more bad matches (bias ↑)
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Table 5. NMLLS and major choice by academic preparation, American Community Survey 
definition, 1995-1999 
 

Group      Obs. First Declared STEM Degree in STEM 

    
Full Sample 9,804 .038 -.002 
  (.032) (.057) 
    
     𝑌𝑌�  .227 .099 
    
HSGPA ≤ 3.28 4,780 -.034 .018 
  (.038) (.013) 
    
     𝑌𝑌�  .173 .040 
    
HSGPA > 3.28 5,019 .123** .005 
  (.048) (.033) 
    
     𝑌𝑌�  .278 .158 
    
HSGPA > 3.78 1,886 -.016 -.018 
  (.077) (.061) 
    
     𝑌𝑌�  .334 .251 
    

Robust standard errors are reported in parentheses.  *, **, and *** denote 
statistical significance at the 10, 5, and 1 percent-level, respectively.  Estimates 
are from difference-in-differences kernel matching performed with a bandwidth 
of h = .2 using the Epanechnikov kernel function.  We report estimates for 
students with below average or average high school GPAs (≤ 3.28), above 
average high school GPAs (> 3.28), and high school GPAs greater than one 
standard deviation above the mean (> 3.78).  𝑌𝑌� denotes the baseline rates of 
STEM major choice and STEM degree attainment by academic preparation. 
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Table 6. NMLLS and major choice by academic preparation, American Community Survey 
definition, 1995-1999, Family Income < $40,000 
 

Group      Obs. First Declared STEM Degree in STEM 

    
Full Sample 2,003 -.021 -.006 
  (.074) (.035) 
    
     𝑌𝑌�  .221 .077 
    
HSGPA ≤ 3.28 978 -.157** .007 
  (.078) (.026) 
    
     𝑌𝑌�  .167 .028 
    
HSGPA > 3.28 1,018 .244** .028 
  (.118) (.070) 
    
     𝑌𝑌�  .274 .124 
    
HSGPA > 3.78 361 -.058 -.197 
  (.269) (.232) 
    
     𝑌𝑌�  .325 .224 
    

Robust standard errors are reported in parentheses.  *, **, and *** denote 
statistical significance at the 10, 5, and 1 percent-level, respectively.  Estimates 
are from difference-in-differences kernel matching performed with a bandwidth 
of h = .2 using the Epanechnikov kernel function.  We report estimates for 
students with below average or average high school GPAs (≤ 3.28), above 
average high school GPAs (> 3.28), and high school GPAs greater than one 
standard deviation above the mean (> 3.78).  𝑌𝑌� denotes the baseline rates of 
STEM major choice and STEM degree attainment by academic preparation. 
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Table 7. NMLLS and major choice by academic preparation, American Community Survey 
definition, 1995-1999, Family Income ≥ $40,000 
 

Group      Obs. First Declared STEM Degree in STEM 

    
Full Sample 7,792 .040 -.002 
  (.036) (.022) 
    
     𝑌𝑌�  .228 .106 
    
HSGPA ≤ 3.28 3,791 -.023 .021 
  (.050) (.016) 
    
     𝑌𝑌�  .175 .043 
    
HSGPA > 3.28 3,997 .090* -.001 
  (.052) (.036) 
    
     𝑌𝑌�  .279 .168 
    
HSGPA > 3.78 1,525 -.023 .008 
  (.078) (.066) 
    
     𝑌𝑌�  .336 .258 
    

Robust standard errors are reported in parentheses.  *, **, and *** denote statistical 
significance at the 10, 5, and 1 percent-level, respectively.  Estimates are from difference-in-
differences kernel matching performed with a bandwidth of h = .2 using the Epanechnikov 
kernel function.  We report estimates for students with below average or average high school 
GPAs (≤ 3.28), above average high school GPAs (> 3.28), and high school GPAs greater than 
one standard deviation above the mean (> 3.78).  𝑌𝑌� denotes the baseline rates of STEM major 
choice and STEM degree attainment by academic preparation. 



Robustness Checks
• Using UNM STEM Collaborative Center definitions produced similar 

results attenuated in both magnitude and statistical significance.

• Alternative smoothing parameters in the matching algorithm 
produced very similar results

– Results found here

• Using 1995 – 2000 cohort produced similar results

– Results found here
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Results

• Low-bar initial continuing/eligibility requirements may have 
induced a compositional change in the student body

• Possible chain of events for marginally-prepared students:

1. NMLLS removes price signals from higher education market
2. College-going decisions distorted

3. Students overmatch to max. “value” of NMLLS
4. Academic preparation changes
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Conclusions

• No evidence of any overall effect on either 
1) choosing STEM as first major
2) completing a degree in STEM

• Academically well-prepared students seem to first declare a 
major in STEM more often as a result of the NMLLS
– Opposite response for the less academically-prepared from low-

income families

• Such programs may alter the composition of who majors in 
STEM
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Conclusions
• STEM degree production may not be affected at UNM due to 

the low-bar nature of the NMLLS

– Academic performance constraints may not be binding

• Changes in student composition may also be affecting results
– Results appear to be driven by students from low-income families

• Program features matter!

– Policymakers: broad merit scholarship programs not certain to curtail 
STEM degree production, esp. if renewal requirements are low
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Thank You

• Thank you for your time

• Questions?

• Contact the author at:

– christopher.erwin@aut.ac.nz
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