

When There is No Way Up: Reconsidering Low-paid Jobs as Stepping Stones

* Gail Pacheco (NZWRI at AUT) and Alexander Plum (NZWRI at AUT, alexander.plum@aut.ac.nz)

Motivation

Consensus in the economic literature that:

- Low-paid face a high level of state dependence (see, beside others, Uhlendorff 2006, Cai et al. 2017)
- Low-paid employment being more a *temporary* labour market position, operating as 'a trajectory to 'decent' jobs' [Fok et al. 2015, p. 892] rather than dead-ends.

However: past literature has relied on survey data

- Estimates are usually based on earnings information for just one period within each year ('point-in-time' definition)
- Bhuller et al. (2017) show in their Norwegian study on welfare benefit receipt dynamics that findings might change when using monthly information

Approach:

- Utilising monthly administrative data on wages and salary to differentiate workers between *strong* low-pay attachment (working at least 6 months of a year in the low wage sector) and weak low-pay attachment (less than 6 months)
- Compare findings with prevailing identification strategy

Literature

Table 1: Low pay persistence of related studies

Study	$P(\operatorname{Lp}_t \operatorname{Lp}_{t-1})$	$P(\operatorname{Hp}_t \operatorname{Lp}_{t-1})$
Cai et al. (2017, Table 2)	0.196	0.556
Cai et al. (2017, Table 6)	0.272	0.472
Mosthaf (2014, Table 5)	0.083 - 0.168	0.695 - 0.789
Uhlendorff (2006, Table 7)	0.050	0.888
Clark & Kanellopoulos	0.033 (Spain) –	-
(2013, Table 4)	0.133 (Portugal)	

Note: Cai et al. (2017) provides estimates based on the BHPS (Table 2) and Understanding Society data (Table 6). Mosthaf (2014) provides a range of estimates based on different qualification groups. Clark & Kanellopoulos (2013) provides a range of estimates based on data from twelve countries.

Conceptual framework

Basic concept:

• Dynamics of earnings model:

$$Y_{ik_m} = \mu_k + \alpha_i + \nu_{ik_m}$$

• An individual is identified as being low-paid in month m if their monthly wage is below threshold τ :

$$LP_{ik_m} = \mathbf{1}(Y_{ik_m} \le \tau)$$

• On an individual level, the share of low-paid employed months can be derived as:

$$LP_{ik}^{S} = \frac{\sum_{m=1}^{M_{ik}} LP_{ikm}}{12}$$
 with $LP_{ik}^{S} \in \{0, \frac{1}{12}, \dots, 1\}$

• The prevailing identification strategy is: $LP_{ik_{m^+}}$ of month $m^+ \in (1, ..., 12) \implies LP_{ik}^s = LP_{ik_{m^+}}$ if $\sigma_v^2 = 0$

Correlation over time:

•
$$corr[LP_{ik-1}^{S}, LP_{ik}^{S}] = \frac{N(\sum_{i} LP_{ik-1}^{S}) - (\sum_{i} LP_{ik-1}^{S})(\sum_{i} LP_{ik}^{S})}{\sqrt{\left[N\sum_{i} (LP_{ik-1}^{S})^{2} - (\sum_{i} LP_{ik-1}^{S})^{2}\right]\left[N\sum_{i} (LP_{ik}^{S})^{2} - (\sum_{i} LP_{ik}^{S})^{2}\right]}}$$

•
$$corr[LP_{ik-1}^{S}, LP_{ik}^{S}] = \frac{N(\sum_{i} LP_{ik-1}^{S} LP_{ik}^{S}) - (\sum_{i} LP_{ik-1}^{S})(\sum_{i} LP_{ik}^{S})}{\sqrt{\left[N\sum_{i} (LP_{ik-1}^{S})^{2} - (\sum_{i} LP_{ik-1}^{S})^{2}\right]\left[N\sum_{i} (LP_{ik}^{S})^{2} - (\sum_{i} LP_{ik}^{S})^{2}\right]}}$$
• $corr[LP_{ik-1_{m^{+}}}, LP_{ik_{m^{+}}}] = \frac{N(\sum_{i} LP_{ik-1_{m^{+}}} LP_{ik_{m^{+}}}) - (\sum_{i} LP_{ik-1_{m^{+}}})(\sum_{i} LP_{ik_{m^{+}}})}{\sqrt{\left[N\sum_{i} (LP_{ik-1_{m^{+}}})^{2} - (\sum_{i} LP_{ik-1_{m^{+}}})^{2}\right]\left[N\sum_{i} (LP_{ik_{m^{+}}})^{2} - (\sum_{i} LP_{ik_{m^{+}}})^{2}\right]}}$

• It can be shown that $\left| \frac{\partial \left(corr\left[LP_{ik-1}^{S}, LP_{ik}^{S} \right] \right)}{\partial \sigma^{2}} \right| < \left| \frac{\partial \left(corr\left[LP_{ik-1}, LP_{ik}^{S} \right] \right)}{\partial \sigma^{2}} \right|$

Model

Figure 1: Simulation results (averages over 500 draws)

Note: The panel shows the correlation ratio between two time periods, for the monthly and 'point-in-time' markers. $\sigma_{\nu}^2 =$ variation in monthly wages.

Data & Descriptives

Source: own representation. **Notes:**

- Focus on the time period of 2007 to 2013 and restrict our sample to male workers aged between 25 to 45 (inclusive) in 2007
- Those men with their earnings belonging to the 10th lowest percentile are defined as low pay.

Table 2: Prevalence of low pay employment

		'Point-in-time' marker			
		$Higher\ pay_t$	$Low\ pay_t$	$Share_t$	
>	$Higher\ pay_t$	100.00	0.00	77.44	
Monthly marker	Weak low pay_t	81.81	18.19	12.31	
Mo	Strong low pay _t	24.78	75.22	10.26	
	$Share_t$	90.05	9.95		

Notes: Data sourced from IDI (2018). Authors' calculations. Based on a random subsample of population of interest N = 47,496. Time period = 2007 to 2013.

Econometric Model and Results

Econometric Model:

- We apply a dynamic random effects multinomial logit model (Uhlendorff 2006, Mosthaf 2014, Fok et al. 2015, and most recently Cai et al. 2017)
- Accounting for the *initial conditions problem* by following the suggestion of Wooldridge (2005)

At t = 0

To integrate out the random effects, we use maximum simulated likelihood (MSL) with Halton draws.

Table 3: Predicted transition probabilities ('Point-in-time' marker)

		111 0	· ·	T 11 Λ D 1: Λ 1.	1 1		1	
	Total	Higher Pay	Low Pay	Table 4: Predicted transition probabilities (Monthly markers)				
$P(Higherpay_t Higherpay_{t-1})$	0.9643	0.9882	0.8058	At t = 0				
	(0.0847)	(0.0104)	(0.1214)		Total	Higher pay	Weak lp	Strong lp
$P(Lowpay_t Higherpay_{t-1})$	0.0357	0.0118	0.1942	$P(Higher\ pay_t Higher\ pay_{t-1})$	0.8892	0.9617	0.7736	0.5825
D(High own so 11 own one)	(0.0847)	(0.0104)	(0.1214)		(0.1631)	(0.0266)	(0.1083)	(0.1482)
$P(Higherpay_t Low\ pay_{t-1})$	0.8664 (0.1936)	0.9226 (0.0593)	0.4185 (0.1800)	$P(Weak low pay_t Higher pay_{t-1})$	0.1012	0.038	0.2199	0.3555
$P(Lowpay_t Lowpay_{t-1})$	0.1336	(0.0393) 0.0774	0.1800)	T(veal(tov) payt Tegree payt=1)	(0.1386)	(0.0263)	(0.1027)	(0.1083)
$I(Bowpay_t Bowpay_{t-1})$	(0.1936)	(0.0593)	(0.1800)	$P(Strong\ low\ pay_t Higher\ pay_{t-1})$	0.0096	0.0003	0.0065	0.0620
<i>Notes:</i> Data sourced from IDI (2018). Authors' calculations. Based on a random subsample of population of interest $N = 47,496$. Time period = 2007 to 2013. Numbers in parenthesis refer to standard deviations.			(0.0301)	(0.0005)	(0.0065)	(0.0469)		
		$P(Higher\ pay_t Weak\ low\ pay_{t-1})$	0.7611	0.8808	0.5016	0.2392		
					(0.2571)	(0.0706)	(0.1484)	(0.1254)
				$P(Weak\ low\ pay_t \ Weak\ low\ pay_{t-1})$	0.1856	0.1140	0.4358	0.4222
					(0.1603)	(0.0654)	(0.1117)	(0.0513)
				$P(Strong\ low\ pay_t Weak\ low\ pay_{t-1})$	0.0533	0.0052	0.0626	0.3386
				(0.1263)	(0.0060)	(0.0443)	(0.1342)	
				$P(Higher\ pay_t Strong\ low\ pay_{t-1})$	0.4349	0.5318	0.1011	0.0145
				T (Intighter payt Bureing few payt=1)	(0.2523)	(0.1605)	(0.0679)	(0.0130)
				$P(Weak\ low\ pay_t Strong\ low\ pay_{t-1})$	0.3089	0.3317	0.4018	0.1219
				(Weak low payt Strong low payt-1)	(0.1069)	(0.0840)	(0.0760)	(0.0476)
				$P(Strong\ low\ pay_t Strong\ low\ pay_{t-1})$	0.2562	0.1366	0.4970	0.8635

Notes: Data sourced from IDI (2018). Authors' calculations. Based on a random subsample of population of interest N =47,496. Time period = 2007 to 2013. Numbers in parenthesis refer to standard deviations.

Robustness

Table 5: Predicted transition probabilities (Mean monthly marker)

		At t = 0		
	Total	Higher Pay	Low Pay	
$P(Higherpay_t Higherpay_{t-1})$	0.9596	0.9976	0.7164	
	(0.1288)	(0.0028)	(0.1857)	
$P(Lowpay_t Higherpay_{t-1})$	0.0404	0.0024	0.2836	
	(0.1288)	(0.0028)	(0.1857)	
$P(Higherpay_t Low\ pay_{t-1})$	0.8718	0.9539	0.1769	
	(0.2602)	(0.0470)	(0.1467)	
$D(Lowpay_t Lowpay_{t-1})$	0.1282	0.0461	0.8231	
	(0.2602)	(0.0470)	(0.1467)	

- \Rightarrow Present evidence that low pay persistence differs with intensity of attachment to the low pay sector:
- 'point-in-time' marker: the likelihood of being low-paid in time period t if being initially low-paid and likewise in time period t-1 is 58.2 percent, while the likelihood of higher pay in t is 41.9 percent

Conclusions

- Monthly marker: for those with initially strong low pay attachment, the probability of staying strong low pay is 86.4 percent, while the probability of moving into higher pay is just 1.5 percent.
- ⇒ Prior empirical evidence has generally been supportive of the 'work-first approach' to work-force participation, 'even if the jobs created are low-paid' [Cai et al. 2017, p. 30].
- \Rightarrow Findings indicate that not every job contributes to the individuals' human capital level (e.g. Stewart 2007).