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Motivation

Background:

• Intensive discussion on inequality (e.g. OECD 2015, IMF 2017)

• Numerous studies on the effect of low pay employment on labour 
market prospects:
stepping-stone towards higher-paid jobs (e.g. Uhlendorff 2006)

no-pay – low-pay cycle (e.g. Stewart 2007)

• Studies provide evidence for state dependence in low pay:

P Low pay𝑡|Low pay𝑡−1 ≥ 𝑃 Low pay𝑡|Higher pay𝑡−1
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Motivation

Aim of this study:

• Discussing the prevailing identification strategy which is based on 
annual labour market information

• Comparing the results with a model that uses a large administrative 
dataset with monthly earning information and accounts for the 
intensity of the low pay attachment

• Please note that results are preliminary
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Motivation

Findings (preliminary):

1) Annual share of individuals affected by low pay is underestimated

2) Level of low pay attachment varies across individuals

3) Intensity of low pay attachment over time is highly correlated

⇓
conventional identification strategy under- and overestimates the 
persistence in low pay substantially
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Literature Review

United Kingdom (BHPS, Understanding Society):

• Stewart & Swaffield (1999): ‘considerable persistence in low pay’ [p. 40]

• Cai et al. (2017): ‘those employees who are on low pay are more likely to be found on low pay in 
the future, compared with those who are (…) unemployed or on higher pay’ [p. 27]

Italy (Survey on Households Income and Wealth):

• Cappellari (2007): ‘considerable state dependence: the experience of low pay raises the 
probability of subsequent low pay episodes’ [p. 465].

Germany (GSOEP):

• Uhlendorff (2006): ‘strong true state dependence in low pay’ [p. 18]

Europe (ECHP):

• Clark & Kanellopoulos (2013): ‘positive, statistically significant state dependence in every single 
country’ [p. 122]

Australia (HILDA):

• Fok et al (2015): ‘Consistent with the previous literature, the results clearly indicate that there is 
state dependence in (…) low-paid employment’ [p. 885]
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Literature Review

Table 1: Low pay persistence of related studies

Study P Lpt|Hpt−1 P Lpt|Lpt−1
Uhlendorff (2006, Germany) 0.024 – 0.038 0.049 – 0.077

Mosthaf (2014, Germany) 0.033 – 0.007 0.091 – 0.168

Clark & Kanellopoulos (2013) UK: 0.071

Germany: 0.064

Italy: 0.045

Cai et al. (2017, UK) 0.160 0.272

Fok et al. (2015, Australia) 0.123
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Conceptual Framework

Interview

year

Interview

2011 2012

• Conventional approach: Identification of low pay employed with respect to the time 
point of the interview

• However: wages not necessarily constant over the year (job changes, promotion)
• However: Inland Revenue (IR) provides information of wages and salaries on the 

monthly level
• Possibility to derive level of attachment to the low pay sector 8



Conceptual Framework

Looking at earning dynamics (e.g. Baker & Solon 2003, Cappellarie & Jenkins 2014):

𝑌𝑖𝑘𝑚 = 𝜇𝑘 + 𝑦𝑖𝑘𝑚

With individual 𝑖 = 1,… ,𝑁, year 𝑘 = 1,… , 𝐾 and month 𝑚 = 1,… ,𝑀

𝑦𝑖𝑘𝑚 = 𝛼𝑖 + 𝜈𝑖𝑘𝑚

with 𝛼𝑖~𝑁(0, 𝜎𝛼
2) and 𝜈𝑖𝑘𝑚~𝑁(0, 𝜎𝜈

2)

𝐿𝑃𝑖𝑘𝑚 = 𝟏 𝑌𝑖𝑘𝑚 ≤ 𝜏

Looking at the annual level 

𝐿𝑃𝑖𝑘 = 𝟏 

𝑚=1

𝑀

𝐿𝑃𝑖𝑘𝑚 > 0
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Conceptual Framework

Looking at the annual level: 

𝐿𝑃𝑖𝑘 = 𝟏 

𝑚=1

𝑀

𝐿𝑃𝑖𝑘𝑚 > 0

Share of individuals experiencing low pay employment:

𝐿𝑃𝑘 =
σ𝑖=1
𝑁 𝐿𝑃𝑖𝑘
𝑁 ×𝑀

≥
𝐿𝑃𝑖𝑘𝑚
𝑁

if 𝜎𝜈
2 > 0

The share of month an individual was low paid employed (low pay attachment):

𝐿𝑃𝑖𝑘
s =

σ𝑚=1
𝑀 𝐿𝑃𝑖𝑘𝑚

𝑀
≥ 𝐿𝑃𝑖𝑘𝑚

if 𝜎𝜈
2 > 0
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Conceptual Framework

Correlation of low pay attachment over time: 

𝑐𝑜𝑟𝑟 𝐿𝑃𝑖𝑘
s , 𝐿𝑃𝑖𝑘+1

s ≥ 𝑐𝑜𝑟𝑟 𝐿𝑃𝑖𝑘𝑚 , 𝐿𝑃𝑖𝑘+1𝑚

𝑌𝑖𝑘𝑚 = 𝜇𝑘 + 𝛼𝑖 + 𝜈𝑖𝑘𝑚

𝑌𝑖𝑘 = 𝑀 × 𝜇𝑘 +𝑀 × 𝛼𝑖 + 

𝑚=1

𝑀

𝜈𝑖𝑘𝑚

ത𝑌𝑖𝑘 = 𝜇𝑘 + 𝛼𝑖 +
σ𝑚=1
𝑀 𝜈𝑖𝑘𝑚
𝑀

𝑀→∞
0

if 𝜎𝜈
2 > 0
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Simulation

Design:

• 5000 individuals, each employed for 12 month

• 𝜇 = log 2000

• 𝜎𝛼 = log(2)
• 𝜎𝑣 = log 1 , log 1.1 … log 2

• 𝜏 = 25𝑡ℎ percentile

• 100 replications 
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Simulation

Annual marker

Monthly marker
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Simulation

Monthly marker

Annual marker
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Descriptive Statistics

Statistics New Zealand’s Integrated Data Infrastructure (IDI):

• IDI links longitudinal microdata about individuals, households etc. from various 
sources

• Backbone is the Central Linking Concordance (CLC) which contains a list of all 
individuals with some characteristics (e.g. sex, date of birth)

Inland Revenue tax data (IR):

• Information on person tax data from Inland Revenue

• Data are provided from 1 April 1999 onwards and the geographic coverage refers to 
all New Zealand

• Data are collected and supplied monthly to the IDI

• For our analysis we use the gross earnings before tax that come from wages and 
salaries
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Descriptive Statistics

Data restrictions:

• Restrict to men 25-55 (OECD: 95% FT employed)

• Drop those with wages below 30ℎ × 4.2weeks × 𝑀𝑊year

• Time frame 2000-2016

• Employed at least 6 months per year (5 consecutive years)

• Age group adjusted monthly low pay threshold (OECD, percentile)

• Using a random subsample of 𝑁 = 39,552 observations
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Descriptive Statistics

Annual marker

Continuous marker
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Descriptive Statistics

Group markert

No Lpt Lp <25%t Lp 25-50%t Lp >50%t

A
n

n
u

al
m

ar
ke

r t No Lpt 79.22% 12.89% 4.79% 3.11% 81.82%

Lpt - 30.94% 16.06% 53.00% 18.18%

64.81% 16.17% 6.84% 12.18%
Source: IDI (2018) and own calculations. N= 39,552

Table 3: Comparing marker
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Descriptive Statistics

Group markert
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Descriptive Statistics

Hpt-1 -> Hpt

Lpt-1 -> Lpt

0
.2

.4
.6

.8
1

M
o
n

th
s
 b

e
in

g
 l
o
w

-p
a

id
 e

m
p

lo
y
e
d

 (
in

 p
e

rc
e
n
t)

0 .2 .4 .6 .8 1
cumulated density

Source: IDI (2018) and own calculations. N= 39,552
20



Descriptive Statistics

Continuous marker

Annual marker
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Descriptive Statistics

No Lpt Lp <25%t Lp 25-50%t Lp >50%t

No Lpt-1 88.75% 9.48% 1.18% 0.6% 64.94%

Lp <25%t-1 43.69% 39.36% 12.08% 4.88% 16.3%

Lp 25-50%t-1 13.61% 31.74% 31.42% 23.23% 6.84%

Lp>50%t-1 2.69% 8.4% 14.03% 74.88% 11.92%

66.01% 15.74% 6.56% 11.7%

Table 4: Transition matrix

Source: IDI (2018) and own calculations. N= 39,552
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Econometric Model

Basic concept: 

• First-order Markov process: lagged dependent variable has a genuine 
effect

• Controlling for unobserved heterogeneity (Heckman 1981a) and its 
correlation with the initial conditions (Heckman 1981b)

• Applying a multivariate random effects probit model which was also 
used in various other low pay studies (Stewart 2007, Buddelmeyer et 
al. 2010, Knabe & Plum 2013, Clark & Kanellopoulos 2013)
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Econometric Model

𝑦𝑖𝑡
ℎ𝑝

= ቊ
1 no low−pay spells,
0 otherwise

𝑦𝑖𝑡
𝑙𝑝 1

= ቊ
1 low−pay spells < 25 percent,
0 otherwise

𝑦𝑖𝑡
𝑙𝑝 2

= ቊ
1 low−pay spells 25 − 50 percent,
0 otherwise

𝑦𝑖𝑡
𝑙𝑝 3

= ቊ
1 low−pay spells > 50 percent,
0 otherwise

The following binary outcome variables are defined as:
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Econometric Model

𝑦𝑖𝑡
ℎ𝑝

= 𝟏 𝛾11𝑦𝑖𝑡−1
𝑙𝑝 1

+ 𝛾12𝑦𝑖𝑡−1
𝑙𝑝 2

+ 𝛾13𝑦𝑖𝑡−1
𝑙𝑝 3

+ 𝑥1𝑖𝑡
′ 𝛽1 + 𝛼1𝑖 + 𝑢1𝑖𝑡 > 0

and if 𝑦𝑖𝑡
ℎ𝑝

= 0,

The observed binary outcome variables are:

𝑦𝑖𝑡
𝑙𝑝 1

= 𝟏 𝛾21𝑦𝑖𝑡−1
𝑙𝑝 1

+ 𝛾22𝑦𝑖𝑡−1
𝑙𝑝 2

+ 𝛾23𝑦𝑖𝑡−1
𝑙𝑝 3

+ 𝑥2𝑖𝑡
′ 𝛽2 + 𝛼2𝑖 + 𝑢2𝑖𝑡 > 0

and if 𝑦𝑖𝑡
ℎ𝑝

= 0 and 𝑦𝑖𝑡
𝑙𝑝 1

= 0,

𝑦𝑖𝑡
𝑙𝑝 2

= 𝟏 𝛾31𝑦𝑖𝑡−1
𝑙𝑝 1

+ 𝛾32𝑦𝑖𝑡−1
𝑙𝑝 2

+ 𝛾33𝑦𝑖𝑡−1
𝑙𝑝 3

+ 𝑥3𝑖𝑡
′ 𝛽3 + 𝛼3𝑖 + 𝑢3𝑖𝑡 > 0

25



Econometric Model

To take care of the “initial conditions problem”, we follow the suggestion of Wooldridge (2005) by 
applying a conditional random-intercept model:

𝛼𝑗𝑖 = 𝜋𝑗1𝑦𝑖0
𝑙𝑝 1

+ 𝛾𝑗2𝑦𝑖0
𝑙𝑝 2

+ 𝛾𝑗3𝑦𝑖0
𝑙𝑝 3

+ ҧ𝑥𝑗𝑖𝑡
′ 𝛿𝑗 + 𝜅𝑗𝑖

with 𝑗 ∈ 1,2,3 , 𝑢𝑗𝑖𝑡~𝑁 0,1 , 𝜅𝑗𝑖~𝑁 0, 𝜎𝜅𝑗
2 .

𝑀𝑆𝐿 =ෑ

𝑖=1

𝑁
1

𝑅


𝑟=1

𝑅

ෑ

𝑡=1

𝑇𝑖

𝑃𝑖𝑡 𝜅1
𝑟, 𝜅2

𝑟 , 𝜅3
𝑟

⇒ All written in Mata
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Results

No Lpt Lp <25%t Lp 25-50%t

No Lpt-1 reference category

Lp <25%t-1 -0.656 -0.473 0.143
(0.027) (0.042) (0.083)

Lp 25-50%t-1 -1.459 -1.137 -0.308
(0.043) (0.047) (0.081)

Lp>50%t-1 -2.367 -2.098 -1.240
(0.056) (0.050) (0.078)

Initial labour market position ✔ ✔ ✔

Exogenous regressors ✔ ✔ ✔

Random effects (uncorrelated) ✔ ✔ ✔

Table 5: Regression results

Source: IDI (2018) and own calculations. N= 35,874
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Results

No Lpt Lp <25%t Lp 25-50%t Lp >50%t

No Lpt-1 0.777 0.178 0.028 0.017
(0.134) (0.097) (0.023) (0.017)

Lp <25%t-1 0.616 0.256 0.087 0.041
(0.166) (0.089) (0.052) (0.033)

Lp 25-50%t-1 0.390 0.269 0.182 0.160
(0.156) (0.046) (0.061) (0.077)

Lp>50%t-1 0.174 0.127 0.156 0.543
(0.094) (0.029) (0.033) (0.104)

Table 6: Predicted probabilities

Source: IDI (2018) and own calculations. N= 35,874
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Results

No Lpt Lpt

No Lpt-1 0.865 0.135
(0.079) (0.079)

Lpt-1 0.732 0.268
(0.113) (0.113)

Table 7: Predicted probabilities
(annual data)

Source: IDI (2018) and own calculations. N= 35,874
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Conclusion

Findings (preliminary):

1) Annual share of individuals affected by low pay is underestimated

2) Level of low pay attachment varies across individuals

3) Intensity of low pay attachment over time is highly correlated

⇓
conventional identification strategy under- and overestimates the 
persistence in low pay substantially
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Thank you very much for your time

Questions?
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