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Abstract

This note evaluates how adaptive learning agents weight different pieces
of information when forming expectations with a recursive least squares al-
gorithm. The analysis is based on a new and more general non-recursive
representation of the learning algorithm, namely, a penalized weighted least
squares estimator, where a penalty term accounts for the effects of the learn-
ing initials. The paper then draws behavioral implications of different spec-
ifications of the learning mechanism, such as the cases with decreasing-,
constant-, regime-switching, and age-dependent gains. The latter is shown
to imply the emergence of “dormant memories” as the agents get old.

Keywords: bounded rationality, expectations, adaptive learning, mem-
ory.

JEL codes: E70, D83, D84, D90, E37, C32, C63.

“The longer you can look back,
the farther you can look forward.”

–Winston Churchill

1 Introduction
Adaptive learning can generate out-of-equilibrium expectations that help explain
deviations from rational expectations and an economy’s transitional dynamics to-
wards equilibrium. Here agents’ beliefs are modeled through the assumption of a
recursive learning mechanism that updates agents’ perceptions about the economy
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as new data observations become available. The weight given to these observa-
tions is a key determinant of the degree of persistence introduced by adaptive
learning in the evolution of expectations, and, hence, it is an important factor in
the explanation of deviations from rational expectations predictions. This note
studies the behavioral implications of alternative specifications of the learning
mechanism, showing how these assumptions can affect the way agents weight
information when forming expectations according to a recursive least squares al-
gorithm.

The first contribution is the proposal of a penalized weighted least squares
non-recursive representation of the learning algorithm, where a penalty term ac-
counts for the effects of the learning initial estimates. This framework, outlined
in Section 2, provides flexible analytical expressions for the calculation of the
weights given to different pieces of information under alternative specifications of
the learning gains, including the traditional decreasing (Marcet and Sargent, 1989)
and constant-gain (Sargent, 1999) specifications, as well as more sophisticated
mechanisms such as endogenous gain-switching (Marcet and Nicolini, 2003) and
age-dependent (Malmendier and Nagel, 2016) specifications.

Several interesting results are outlined in Section 3, including the key findings
that: (i) the assumption of a diffuse initial under constant-gain implies that the
profile of weights given to past observations is time-varying, hence distorting the
behavioral interpretation of this mechanism in small samples of data; and, (ii) the
application of decreasing-gains to cohort-level data, which leads to age-dependent
gains, also leads to the emergence of “dormant memories,” namely, that experi-
ences earlier in the agent’s lifetime can have a comeback and receive an increasing
weight as the individual ages. Detailed derivations are provided in an Online Ap-
pendix.

2 Framework
In models with adaptive learning a perceived law of motion (PLM) is specified
relating the variables agents are assumed to observe and those variables they care
and need to form expectations about. Focusing on a univariate case a typical PLM
specification is given by a linear regression model of the form

yt = x′tφ t + εt , (1)

where yt is assumed to be related to a vector of (pre-determined) variables, xt =
(x1,t , . . . ,xk,t)

′, through the vector of coefficients φ t = (φ1,t , . . . ,φk,t)
′, and εt de-

notes a white noise disturbance term.
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Recursive learning A recursive estimator is assumed to represent how agents
update their PLM estimates as new observations become available. One popu-
lar algorithm (see Berardi and Galimberti, 2014) is given by the Recursive Least
Squares (RLS),

φ̂ t = φ̂ t−1 + γtR−1
t xt

(
yt−x′t φ̂ t−1

)
, (2)

Rt = Rt−1 + γt
(
xtx′t−Rt−1

)
, (3)

where γt is a learning gain parameter, Rt stands for an estimate of regressors’
matrix of second moments, E [xtx′t ], and the

{
φ̂ 0,R0

}
initial estimates are set to

be consistent with plausible agents’ beliefs at the beginning of the modeled sample
(see Berardi and Galimberti, 2017b). The learning gain is an important parameter
of this learning mechanism because it determines how quickly new information is
incorporated into the recursive estimates, and hence, how quickly agents react to
different pieces of information. More precisely, the sequence of learning gains can
be related with the relative weights given to sample observations in the estimation
process. In order to draw this relationship it is useful to consider the non-recursive
formulation corresponding to this estimation problem.

Non-recursive form When initialized from arbitrary initials, φ̂ 0 and R0, the
RLS has a non-recursive form given by

φ̂ t = argmin
t

∑
i=1

ωt,i
(
yi−x′iφ̂ t

)2
+ωt,0

(
φ̂
′
0− φ̂

′
t

)
R0
(
φ̂ 0− φ̂ t

)
, (4)

=

[
t

∑
i=1

ωt,ixix′i +ωt,0R0

]−1[ t

∑
i=1

ωt,ixiyi +ωt,0R0φ̂ 0

]
, (5)

where the weights are related to the sequence of learning gains according to

ωt,i =


∏

t
j=1
(
1− γ j

)
f or i = 0(initial),

γi ∏
t
j=i+1

(
1− γ j

)
f or 0 < i < t,

γt f or i = t,

(6)

Interestingly, when the initial is taken into account, the RLS is equivalent to a
Weighted Least Squares (WLS) estimation problem augmented with a penalty on
squared deviations between estimates and initials.

Relation to literature This non-recursive formulation of the RLS for arbitrary
initials has never been outlined in the previous literature. Berardi and Galimberti
(2013), for example, have drawn a correspondence between the RLS and the stan-
dard (without penalty) WLS, except that under the assumption of a diffuse initial
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prior, when R0→ 0. From a Bayesian point of view, Rt is inversely related to the
uncertainty in the corresponding Kalman filter estimates of φ t (see Evans et al.,
2010). Hence, R0→ 0 can be interpreted as increasing the uncertainty about the
initial estimates, and it is only under this diffuse prior assumption that the standard
WLS is equivalent to the RLS. Also, notice that if R0 = 0 (exactly rather than as
a limit), (2)-(3) implies that φ̂ 1 = (x1x′1)

−1 x1y1, which will be indeterminate1 for
k > 1.

3 Information weighting
The weight given to a sample observation determines the amount of information
from that particular observation that is incorporated into the parameters’ esti-
mates. The non-recursive estimator above allows the calculation of such weights
for any arbitrary sequence of learning gains. Also notice that the weights, ωt,i,
defined in equation (6), are already in relative terms, though this equivalence does
not hold under diffuse initials.

3.1 Decreasing-gain
The decreasing-gain (DG) specification has been prominent in the adaptive learn-
ing literature since the seminal contributions of Bray (1982); Marcet and Sargent
(1989). Under γ

dg
t = 1/(t +1), the weights are given by

ω
dg
t,i =


∏

t
j=1

(
j

j+1

)
= 1

2
2
3 · · ·

t−1
t

t
t+1 = 1

t+1 f or i = 0,
1

i+1 ∏
t
j=i+1

(
j

j+1

)
= 1

i+1
i+1
i+2 · · ·

t
t+1 = 1

t+1 f or 0 < i < t,
1

t+1 f or i = t,

and every observation receives an equal weight that is decreasing with the sample
size, which makes the DG-RLS particularly interesting for the analysis of learning
convergence towards equilibrium.

OLS equivalence breakup The DG-RLS is often motivated as representative of
real-time econometricians due to its resemblance with the Ordinary Least Squares
(OLS) estimator from econometrics,

φ̂
ols
t =

[
t

∑
i=1

xix′i

]−1[ t

∑
i=1

xiyi

]
.

1More precisely, x1x′1 must have full rank for a non-degenerate inverse to exist; to guarantee
the existence of this inverse, γt = 1 must also be ruled out.
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However, as equation (5) now makes clear, such an equivalence would require
disregarding the learning initials.

3.2 Constant-gain
The constant-gain specification (CG) became popular after Sargent (1999) for its
improved capability of tracking the evolution of time-varying environments. This
specification has also been under the spotlight of recent research for its potential
of generating escape dynamics (Williams, 2019) and asymptotically stable distri-
butions of beliefs (Galimberti, 2019). Under γ

cg
t = γ̄ , the weights are given by

ω
cg
t,i =

{
∏

t
j=1 (1− γ̄) = (1− γ̄)t f or i = 0,

γ̄ ∏
t
j=i+1 (1− γ̄) = γ̄ (1− γ̄)t−i f or 0 < i≤ t.

Hence, the weights given to past information under CG-RLS decrease with the
observation lag (l = t− i), a property that makes this mechanism particularly well
suited for modeling the behavioral assumption that agents give higher emphasis
to more recent observations than to those farther into the past.

Finite sample distortion under diffuse initials The profile of weights given
to past observations by the CG-RLS becomes time-varying under diffuse initials.
Particularly,

ω
dcg
t,t−l =

γ̄ (1− γ̄)l

1− (1− γ̄)t , (7)

is declining with both the observation lag and the sample size, distorting the be-
havioral interpretation of CG in small samples: letting t stand for age, equation (7)
implies that a younger agent would assign a higher weight to any given observa-
tion than an older one experiencing the same observation. These effects are also
illustrated in Figure 1..
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Figure 1: Constant-gain weights under diffuse initials.

(a) Lagged weights by sample.

0  12 24 36 48 

lags (obs.)

0

0.02

0.04

0.06

0.08

0.1

O
b
s.

 w
ei

g
h
ts

12-obs. sample

24-obs. sample

48-obs. sample

Asymptotic

(b) Sample weights by observation lag.
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Notes: Weights calculated using equation (7) with γ̄ = 0.02.

Persistently influential initials The duration of the effects of the initials under
CG-RLS within finite samples will depend on the gain magnitude. In fact, the
number of observations for which the initial will have a greater weight than the
whole sample of data, i∗, can be calculated by solving:

i∗

∑
j=1

ω
cg
t, j = ω

cg
t,0,

i∗ =
log(1/2)

log(1− γ̄)
,

which is decreasing with γ̄ . Strikingly, for a gain value of γ̄ = 0.02, which is
typically found in applications with quarterly macroeconomic data (see Berardi
and Galimberti, 2017a), i∗ ' 34, or about 81/2 years of quarterly data for the CG-
RLS to assign a higher weight to the sample of observations than the weight given
to the learning initials in the PLM estimates.

3.3 Generalized decreasing-gain
A recent strand of the literature has revived the decreasing-gain specification with
the proposal of so-called learning from experience, where agents expectations are
modeled at cohort-level (Malmendier and Nagel, 2016, MN); this approach natu-
rally leads to the emergence of dispersed beliefs, depending on the age structure
of the population, which MN find empirical support in consumers survey data.
Their modeling of learning is based on a generalization of decreasing-gain (GDG),
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where2

γ
gdg
t =

θ

t +θ
, (8)

with θ > 0; in fact, notice that the original DG-RLS is obtained when θ = 1.
Otherwise, it is interesting to cast the GDG-RLS weights in lag recursive form,
starting from ω

gdg
t,t = θ/t+θ and expanding to

ω
gdg
t,t−1 = ω

gdg
t,t

(
t

t−1+θ

)
,

ω
gdg
t,t−2 = ω

gdg
t,t−1

(
t−1

t−2+θ

)
,

...

ω
gdg
t,t−l = ω

gdg
t,t−l+1

(
t− l +1
t− l +θ

)
,

which makes clear that the weight given to lagged observations within a sample
of data decreases with the lag if θ > 1, and increases if θ < 1.

Age-dependent experiences The GDG specification also implies a time-varying
profile of weights as the sample size grows. In behavioral terms this is what MN
(p. 59) refer as “experiences earlier and later in life to have a different influence”
on expectations. To see this consider how the weight given to a fixed observation
lag evolves as the sample increases by one observation:

ω
gdg
t,t−l

ω
gdg
t−1,t−1−l

=

θ

t−l+θ ∏
t
j=t−l+1

(
j

j+θ

)
θ

t−1−l+θ ∏
t−1
j=t−l

(
j

j+θ

) ,
=

t
t− l

(
t−1− l +θ

t +θ

)
,

which is smaller than 1 if θ < t/l (always the case for θ ≤ 1, and for l = 0). Hence,
the lagged observation weight decreases with the sample size as long as θ is small
enough relative to the sample size/lag ratio.

2The exact gain specification in MN is

γ
mn
t,s =

{
θ

t−s i f t− s≥ θ ,

1 i f t− s < θ ,

where t− s stands for the agent’s age; however, this specification is problematic because it leads
to degenerate inverses when t− s≤ θ (see also footnote (1)), an issue circumvented with a slight
modification in equation (8).
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Dormant memories When θ > 1, the weight given to some lagged observa-
tions may increase as the sample size grows—although an individual’s memories
of past experiences tend to fade away, “dormant memories” may have a comeback
as the individual ages. This effect is more clearly illustrated in Figure 2b: notice
how the weights given to 20-years lagged observations increase during an individ-
ual’s lifetime at the same time that the weights given to more recent observations
are decreasing. Also notice that the higher θ the stronger the effects of dormant
memories.

Figure 2: Generalized decreasing-gain weights.

(a) Lagged weights by age.
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(b) Lifetime weights by observation lag.
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Notes: Weights calculated for quarterly data using eqs. (6)-(8) and θ = 3. The
circles in panel (b) indicate the turning points of the corresponding curves.

3.4 Time-varying gains
Time-varying gains offer an alternative to relax the determination of informa-
tion weighting under learning. In the literature, this has been achieved either
by merging the decreasing- and constant-gain specifications (Marcet and Nicolini,
2003; Milani, 2014), or by turning the determination of the gains endogenous with
an additional adaptation mechanism (Kostyshyna, 2012; Berardi and Galimberti,
2017a). In both cases the learning gain is adjusted according to the recursive fore-
casting performance of the implied expectations, increasing/decreasing the gain
(or switching from decreasing- to constant-gain and vice-versa) during periods of
elevated/low forecasting errors. These time-varying approaches allow the model-
ing of behavioral shifts of attention that agents give to incoming data, which could
be motivated as a concern with structural changes. One interesting implication of
our results is that the learning gain does not need to increase for the weight given
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to the latest observation to rise; more formally, ωt,t > ωt,t−1 only requires that

γt > γt−1 (1− γt) ,

γt >
γt−1

1+ γt−1
. (9)

Gain-switching revisited Marcet and Nicolini (2003) propose an endogenous
gain mechanism that can be represented in our framework as

γ
gs
t =

{
γ̄

1+sγ̄
i f C

γ̄ otherwise,
(10)

where s = t− ts stands for the number of periods since the last time the constant-
gain was used, and C for a regime-switching condition. Using equation (9)
we find that a switch from the decreasing-gain, γ

gs
t−1 = γ̄/(1+(s−1) γ̄), to the

constant-gain regime, γ
gs
t = γ̄ , would always imply that the latest observation

will be given a higher weight than the previous one—which is consistent with
the structural change/tracking rationale given to this learning mechanism. When
the switch goes on the other direction, from the constant-gain, γ

gs
t−1 = γ̄ , to a

decreasing-gain, γ
gs
t = γ̄/(1+ γ̄), equation (9) turns into an equality, which means

the new observation is given a weight that is equal to that given to the previous
observation.

4 Concluding remarks
This note proposed a new and more general non-recursive representation of the
recursive least squares algorithm, drawing renewed behavioral learning implica-
tions of alternative assumptions about the learning gains. One key finding is that,
without a proper account for the learning initial, the estimation of models under
the assumption of a constant gain over increasing samples of data would imply
agents give a decreasing weight to more recent observations, distorting the rele-
vance of learning in the determination of the latest economic developments being
modeled. Another interesting finding is that the application of decreasing-gains
to cohort-level data, an approach that has found empirical support from recent
research on consumers’ expectations survey data, can lead to the emergence of a
U-shaped profile of weights, where data observed earlier in an agent’s lifetime can
have a comeback as dormant memories.
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A Online Appendix

A.1 Penalized WLS matrix derivation
It is sometimes useful to have estimators in matrix form. For the case with ar-
bitrary initials, φ̂ 0 and R0, the RLS is equivalent to the solution of a penalized
regression problem given by

φ̂ t = argmin
{(

yt− φ̂
′
tXt

)
Ωt
(
y′t−X′t φ̂ t

)
+ωt,0

(
φ̂
′
0− φ̂

′
t

)
R0
(
φ̂ 0− φ̂ t

)}
,

where Xt = (x1,x2, . . . ,xt) is a (k× t) matrix collecting the regressors’ time series,
yt = (y1,y2, . . . ,yt), Ωt = diag(ωt,1,ωt,2, . . . ,ωt,t) is a weighting matrix with the
sequence of weights in the main diagonal and zeros otherwise. The solution to
this minimization problem is then given by

φ̂ t =
(
XtΩtX′t +ωt,0R0

)−1 (XtΩty′t +ωt,0R0φ̂ 0
)
.

A.2 Correspondence between penalized WLS and RLS
This appendix shows how the RLS of (2)-(3) can be derived from the penalized
WLS formulation of (5) and (6) (using the paper’s numbering), which are repro-
duced here for convenience:

φ̂ t = φ̂ t−1 + γtR−1
t xt

(
yt−x′t φ̂ t−1

)
, (2)

Rt = Rt−1 + γt
(
xtx′t−Rt−1

)
, (3)

φ̂ t =

[
t

∑
i=1

ωt,ixix′i +ωt,0R0

]−1[ t

∑
i=1

ωt,ixiyi +ωt,0R0φ̂ 0

]
, (5)

where

ωt,i =


∏

t
j=1
(
1− γ j

)
f or i = 0,

γi ∏
t
j=i+1

(
1− γ j

)
f or 0 < i < t,

γt f or i = t.

(6)

First notice that iterating (3) recursively from R0 we have that

Rt =
t

∑
i=1

ωt,ixix′i +ωt,0R0,

which is the inverse of the first term in (5), leading to

φ̂ t = R−1
t

[
t

∑
i=1

ωt,ixiyi +ωt,0R0φ̂ 0

]
. (A.1)
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For the second term notice that

t

∑
i=1

ωt,ixiyi =
t−1

∑
i=1

ωt,ixiyi + γtxtyt ,

= (1− γt)
t−1

∑
i=1

ωt−1,ixiyi + γtxtyt ,

and
ωt,0R0φ̂ 0 = (1− γt)ωt−1,0R0φ̂ 0,

where we use
ωt,i = (1− γt)ωt−1,i,

which follows from (6). Hence, (A.1) is equivalent to

φ̂ t = R−1
t

[
γtxtyt +(1− γt)

(
t−1

∑
i=1

ωt−1,ixiyi +ωt−1,0R0φ̂ 0

)]
. (A.2)

Lagging (A.1) one period we find that

Rt−1φ̂ t−1 =
t−1

∑
i=1

ωt−1,ixiyi +ωt−1,0R0φ̂ 0,

which can be substituted into (A.2) to yield

φ̂ t = R−1
t
[
γtxtyt +(1− γt)Rt−1φ̂ t−1

]
. (A.3)

From (3) notice that
(1− γt)Rt−1 = Rt− γtxtx′t ,

which substituted into (A.3) and after rearranging leads to

φ̂ t = R−1
t
[
γtxtyt +

(
Rt− γtxtx′t

)
φ̂ t−1

]
,

= γtR−1
t xtyt + φ̂ t−1− γtR−1

t xtx′t φ̂ t−1,

= φ̂ t−1 + γtR−1
t xt

(
yt−x′t φ̂ t−1

)
,

establishing the correspondence between the penalized WLS solution of (5) and
the RLS of (2).
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A.3 Absolute and relative weights
What in fact matters for estimation are the relative weights instead of their ab-
solute values. To see that, consider the effects of multiplying the sequence of
weights in the solution to the penalized WLS problem,

{
ωt,0,ωt,1, . . . ,ωt,t

}
in

equation (5), by a constant κ; clearly, such a re-scaling of the weights will have
no effect over the resulting estimates because the constant factor entering in the
numerator will cancel out with that entering in the denominator of the estimator.
In order to calculate relative weights one needs to divide the absolute weights by
their total. Letting W n

t stand for the sum of weights starting from weight n up to
weight t, from the definition of the absolute weights, (6), this sum of weights can
be expanded according to

W 0
t =

t

∑
i=0

ωt,i,

=
t

∏
j=1

(
1− γ j

)
+

t−1

∑
i=1

γi

t

∏
j=i+1

(
1− γ j

)
+ γt . (A.4)

Expanding the first term of (A.4) we have that

ωt,0 = (1− γ1)(1− γ2) . . .(1− γt−1)(1− γt) ,

= (1− γ2) . . .(1− γt−1)(1− γt)− γ1

t

∏
j=2

(
1− γ j

)
,

= 1− γt−
t−1

∑
i=1

γi

t

∏
j=i+1

(
1− γ j

)
. (A.5)

Returning to (A.4) we then have

W 0
t = 1− γt−

t−1

∑
i=1

γi

t

∏
j=i+1

(
1− γ j

)
+

t−1

∑
i=1

γi

t

∏
j=i+1

(
1− γ j

)
+ γt ,

= 1.

Hence, in the context of the correspondence between the RLS and the penalized
WLS outlined in this paper, the relative weights will be equal to their correspond-
ing absolute weights.
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