2023 BIS / NZWRI SEMINAR MONDAY 24 APRIL | 11:00 – 12:00 | WF204/TEAMS

A new methodological approach for considering workers' diversity in assembly system design (by taking into account the European MAIA project)

Presenter: Niloofar Katiraee

DIPARTIMENTO DI TECNICA E GESTIONE DEI SISTEMI INDUSTRIALI

This|project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 873077

www.maiaproject.eu

1. Overview of the activities in the research group

2. MAIA project

3. Ph.D. thesis

UNIVERSITÀ

degli Studi di Padova

DOCTORAL COURSE IN MECHATRONICS AND PRODUCT INNOVATION ENGINEERING

Ph.D. title: A new methodological approach for considering workers' diversity in assembly system design

Supervisor: Prof. Martina Calzavara* **Co-supervisors**: Prof. Daria Battini* & Prof. Olga Battaïa**

Industrial Plants and Logistics group

* Department of Management and Engineering ,University of Padova **Department of Operations Management and Information Systems, KEDGE Business School

>60

15

Ph.D. students

>3000 Students today 3 BA and 4 MA courses of study

Laboratories (12 research labs.)

Industrial plants and logistics group

SSD_ric	Istituzione 💌	Somma punteggi (v)	# Prodotti attesi (; 🖕	Valutazione media (I=v/n)	R (Profilo B)	Pos. grad. compl	Num. istituzioni compl 🔻	Quartile	Pos. grad. Quarti'	Gruppo Padova
ING-IND/17	Bergamo	12,1	14	0,86	1,12	2	9	4	2	erepperaatia
ING-IND/17	Bologna	16	20	0,8	1,03	5	9	4	5	RANK 1°
ING-IND/17	Brescia	15,3	19	0,81	1,04	4	9	4	4	
ING-IND/17	Castellanza LIUC	15	20	0,75	0,97	7	9	4	6	
ING-IND/17	Milano Politecnico	42,7	51	0,84	1,08	3	9	4	3	
ING-IND/17	Napoli Federico II	7,3	10	0,73	0,94	8	9	3	2	Best Logistics Research Team of
ING-IND/17	Padova	17,8	20	0,89	1,15	1	9	4	1	Italy
ING-IND/17	Palermo	10,1	14	0,72	0,93	9	9	4	7	(From 2004)
ING-IND/17	Parma	7,8	10	0,78	1,01	6	9	3	1	(110111 2004)

Prof. Persona Alessandro

Prof.ssa Battini Daria

Prof. Faccio Maurizio

Prof.ssa Calzavara Martina

Ing. Zennaro llenia

Ing. Finco Serena

Ing. Katiraee Niloofar

Ing. Berti Nicola

Analysis and design of resilient supply network systems

Central logistics hub design

Supply network simulation

Analysis and design of resilient supply network systems

anyLogistix

features business challenges purchase academic resources company

anyLogistix is the supply chain analytics software to design, optimize and analyze your company's supply chain. It combines powerful analytical optimization approaches together with innovative simulation technologies offering you a comprehensive set of tools for end-to-end supply chain analytics.

Digital ergonomic

How is digital technology influencing ergonomics, work design and risk mapping?

Workforce Ergonomics and Management Platform (WEM)

How is digital technology influencing ergonomics, work design and risk mapping?

WEM-Platform aims to provide <u>real-time</u> postural risk assessment and <u>feedback</u> with insightful report made on-time and on-site.

UNIVERSITÀ

Exoskeletons

Exoskeletons are wearable devices designed for empowering human's biomechanical capabilities

Overhead assembly tasks

No-overhead assembly tasks

Construction and manufacturing tasks

Picking and material handling tasks

UNIVERSITÀ

degli Studi di Padova

Exoskeleton & WEM

Investigating the impact of a back-support exoskeleton on worker productivity and ergonomics in order picking

UNIVERSITÀ DEGLI STUDI DI PADOVA

European MAIA project

Linked in

multidisciplinary International and academy network focused on the aging workforce problem in manufacturing systems.

7 EU partners + 7 TC partners Almost 1 million € funded From 2020 to 2025

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 873077

7 European partners

7 EUROPEAN PARTNERS: «BENEFICIARIES»

Project leader

Università degli Studi di Padova

7 third country partners

7 PARTNERS from CANADA, JAPAN, HONG KONG, NEW ZELAND, US

Università degli Studi

DI PADOVA

Keio University

Keio University

The Chinese University of Hong Kong

University Of South Florida Board Of Trustees

The University of Auckland

Barich The City University of New York ZICKLIN SCHOOL OF BUSINESS

Research Foundation Of The City University Of New York

Ryerson University

Auckland University of Technology

MAIA secondments

Università

degli Studi di Padova

UNIVERSITÀ DEGLI STUDI DI PADOVA

Labor force is aging

Sources: OECD; European Commission; BLS; and IMF staff calculations.

ISO 25550 Age-inclusive workforce

ISO 25550:2022 Ageing societies

General requirements and guidelines for an age-inclusive workforce

1. Workforce planning, re-entry, re-skilling

2. Age-friendly workspace

- 3. Individual health and wellbeing programs
- 4. Intergenerational collaboration and knowledge transfer and ageing-inclusive digital tools
- 5. Transition to retirement and continue working after retirement

The MAIA framework

Università degli Studi

DI PADOVA

Introduction

 ✓ Designing industrial operation systems more human-centred, human-friendly, and sustainable as also is recommended by Industry 5.0 paradigms.

✓ Assembly lines are such of these manufacturing environments, since the presence of human workers is relevant, and the system performance largely relies on the workers' efficiency and motivation.

✓ Respond to **individuality**

ISO 25550:2022 Ageing societies

General requirements and guidelines for an age-inclusive workforce

Introduction

Università degli Studi

DI PADOVA

- Investigating differences between workers and how these differences can impact on the overall production systems.
- Developing new optimization models and a methodological framework in order to respond to individual needs in assembly systems.
- Using proposed approaches to increase the workers' contribution in job assessment.

Literature analysis

(Scopus Two	sets of keywords	Selection Criteria
Workers' differences	1) Title= "skilled-work*" OR "skill*" OR "age" OR "aging" OR "gender" OR "body and physical measure" OR "anthropometry" OR "human factor", OR "worker variability" OR "individual factor" OR "heterogenous worker*" OR "anthropology"	 The focus has to be on a production setting and manufacturing sector Included workers'
Problems under development	2) Title= "assembly system" OR "assembly line*" OR "manual assembly line" OR "task assignment" OR "work assignment" OR "job assignment" OR "job schedule*" OR "task schedule*" OR "worker assignment" OR "task schedule*" OR "or "task seguencing" OR "worker allocation" OR "job rotation" OR "task switching" OR "job sequencing" OR "task sequencing" OR "work space design" OR "layout design" OR "workstation design" OR "facility location" OR "production system*" OR "manufacturing system*"	differences measurements in modelling and design procedure
7051 p	100 relevant papers	

Katiraee, N., Calzavara, M., Finco, S., Battini, D., & Battaïa, O. (2021). Consideration of workers' differences in production systems modelling and design: State of the art and directions for future research. *International Journal of Production Research*, 1-32.

Literature analysis

How have the differences among workers been considered in manual production systems in previous studies?

2023 BIS / NZWRI SEMINAR 24 April

UNIVERSITÀ

degli Studi di Padova

Literature analysis

What conclusions have been made regarding the impact of human variability on the performances of manual production systems?

Effect of human diversity factors on production system								
Effects from	Effects on	Number of papers						
Skills								
	Cycle time / makespan time	20						
	Task processing time / operation time	28						
	Idle time	2						
	Cost	13						
	Labor cost	10						
	Cross Training cost	9						
	Throughput / Productivity / output/ line efficiency	17						
	Workload balancing / smoothing	6						
	Others: Energy expenditure, job safety and workers' health	3						
Age								
	Cycle time; task processing time	3						
	Experience	1						
	Throughput / Productivity / output/ line efficiency	4						
	Physical workload capacity / Fatigue or discomfort	4						
Gender								
	Throughput / Productivity / output/ line efficiency	2						
	Task processing time	1						
	Physical workload capacity / Fatigue or discomfort	1						
Anthropometry								
	Throughput / Productivity / output/ line efficiency	1						
	Physical workload capacity / Fatigue or discomfort	1						
	Others: Energy expenditure, job safety and workers' health	7						

Mathematical models

Katiraee, N., Calzavara, M., Finco, S., Battini, D., (2021). Consideration	Katiraee, N., Finco, S., Battaia, O, Battini, D., (2021). Balancing assembly
of workforce differences in assembly line balancing and worker	line with inexperienced and trainer workers: APMS international
assignment problem. IFAC-INCOM	Conference, Advances in Prduction Management Systems.

Università degli Studi

DI PADOVA

(1) Bi-Objective model by taking into account individual difference

(2) Single-Objective model by taking into account two sets of workers: trainers (experienced) and assembler (inexperienced) workers

Assemblers' contribution

Assembly Line Balancing by taking into consideration the **assemblers (inexperienced)** and **trainers (experienced)** workers

Objective function:

Minimize Cost

$$Cost = \sum_{j} \left[\sum_{t} CT \dot{z}_{jt} + \sum_{w} CW z_{jw} + C_{j} y_{j} \right]$$

Integrated model

	INPUT DATA	ĺ	MATHEMATICAL MODEL	\ \ 	OUTPUT
Phase 1: Strategic and tactical phase (long-term decision)	 Tasks time (average value) Precedence constraints Cycle time 	\rightarrow	Simple Assembly Line Balancing Type I (SALBP-1)	Ĥ	 Minimum number of workstations (J*) Tasks to station assignment (a_{ij})
Phase 2: Operative phase (medium- and short-term decisions)	 Minimum number of workstations Tasks to station assignment Precedence constraints Workers' tasks time Workers' physical capabilities and perception (BORG score) Set of assemblers and trainers Energy expenditure, Rest Allowance (RA) 	4	Assembly Line Worker Assignment & Rebalancing Problem (ALWARBP)	Â	 Minimum cycle time Minimum number of reassigned tasks Number of trainers involved
	· · · · · · · · · · · · · · · · · · ·		``		**

UNIVERSITÀ **DEGLI STUDI**

DI PADOVA

Integrated model

Model application in case studies

Case	1	2	3
Problem characteristics (size)	Small	Medium	Large
Number of tasks	50	80	125
Number of task precedencies	54	93	210
ct of the initial design (SALBP) [min/pc]	2.00	50.50	112.00
Number of workstations and assemblers	4	6	6
Number of experienced assemblers	1	-	1
Number of low experienced assemblers	2	3	2
Number of inexperienced assemblers	1	3	3
Number of trainers	1	2	2

- Small-size problem concerning the • assembly of a jet pump
- Medium-size problem concerning the • sub-assembly of a minibus
- Large-size problem concerning the ٠ sub-assembly of a business jet

Model application in medium case

Case	2
Problem characteristics	Medium
Number of tasks	80
Number of task precedencies	93
CT of the initial design (SALBP) [min]	50.50
Number of workstations and assemblers	6
Number of experienced assemblers	-
Number of low experienced assemblers	3
Number of inexperienced assemblers	3
Number of trainers	2

Scenarios	Task time	Physical workload	Trainer	Rest Allowance (RA)
ALWARBP	×			
ALWARBP-T	×		×	
ALWARBP-B	×	×		
ALWARBP-TB	×	×	×	
ALWARBP-RA	×			x

Methodological approach

1. Initial 1. In	🔁 1.1 Analysis												
design ^{des}	Information and data collection Output: Available space, needed equipment, task precedencies, tasks time												
	1.2 Design												
2. W inte	2. W inte Dutput: Tasks assignment, Number of workstations												
2. Workers'	2. Workers' 2.1 Analysis												
integration	Job assessment Tools: Analysts experience Output: Jobs/tasks types	Trainers' contribution evaluation											
ſ	Workers' assessment <i>Tools</i> : Analysts experience <i>Output</i> : Workers' types	Tools: Chronotechnics, MTM, MOST, Output: Tasks time variation											
	Workers involvement in job assessment (1) Expertise (t _{tw}) (2) Perceived physical exertion (pw _{tw}) Tools: Chronotechnics, MTM, MOST NASA-TLX Output: Worker Task Categorization Matrix (WTCM)												
3. Ass	2.2 Design												
	Integration of workers differences in assembly line balancing Tools: Model 1 (ALWABP-2) Output: Pareto frontier (CT, PES _{max})	Integration of trainers in assembly line balancing <i>Tools</i> : Model 2 (<i>ALWABP</i>) <i>Output:</i> Total cost, number of trainers											
	2.3 Re-design	in assembly line re balancing											
4. Mo	<i>Tools</i> : Integrated model (<i>ALWARBP</i> , <i>ALWARBP-B</i> , <i>ALW</i> , <i>ALWARBP-RA</i>) <i>Output</i> : Pareto frontiers (<i>TR</i> , <i>CT</i>)	ARBP-T, ALWARBP-TB,											
		202											

Methodological approach

List of papers

Publications in scientific journals

Università degli Studi

DI PADOVA

- Katiraee, N., Calzavara, M., Finco, S., Battini, D., & Battaïa, O. (2021). Consideration of workers' differences in production systems modelling and design: State of the art and directions for future research. *International Journal of Production Research*, 1-32.
- Katiraee, N., Calzavara, M., Finco, S., Battaïa, O., & Battini, D. (2022). Assembly line balancing and worker assignment considering workers' expertise and perceived physical effort. *International Journal of Production Research*, 1-21.

Conference proceeding

- Katiraee, N., Battini, D., Battaia, O., & Calzavara, M. (2019). Human diversity factors in production system modelling and design: state of the art and future researches. *IFAC-PapersOnLine*, 52(13), 2544-2549.
- Katiraee, N., Berti, N., Calzavara, M., Finco, S. & Battini, D. (2020). The workforce ageing phenomenon: statistics, policies and practices. *Proceedings of the Summer School Francesco Turco*.
- Katiraee, N., Calzavara, M., Finco, S., Battini, D., (2021). Consideration of workforce differences in assembly line balancing and worker assignment problem. *IFAC-INCOM*.
- Katiraee, N., Finco, S., Battaia, O, Battini, D., (2021). Balancing assembly line with inexperienced and trainer workers: *APMS international Conference, Advances in Prduction Management Systems*.
- Keshvarparast, A., Katiraee, N., Finco, S., Battini, D., (2021). Impacts of Cobots in manufacturing systems: literature review and open questions: *Proceedings of the Summer School Francesco Turco*.
- Battini, D., Finco, S., Katiraee, N., Grosse, E. H., & Glock, C. H. (2021). Active ageing workforce in manufacturing systems: an international discussion (No. 131506). *Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies*

Università degli Studi

DI PADOVA

List of papers

Keshvarparast, A., Katiraee, N., Pirayesh, A., Battaia, O, Berti, N, (2023). Integrated Resource Optimization in a Multi-Product Separated Line Collaborative Assembly Line Balancing Problem (MPSLC-ALBP); Accepted in *IFAC-PapersOnLine*.

Katiraee, N., Keshvarparast, A., Finco, S., Calzavara, M, (2023). Workforce individualization in Collaborative Assembly Line Re-Balancing; Accepted in *27th International Conference on Production Research*

Martignago, M., Calzavara, M, Katiraee, N., Ivanov, D, Battini, D (2023). Investigating the effects of different actions on the resilience of a supply chain: a case study. Accepted in *27th International Conference on Production Research*

Thank you for your attention

Email: niloofar.katiraee@unipd.it

Department of Management and Engineering University of Padua – ITALY

Università degli Studi

DI PADOVA

Model 1

Model 1

Model application in case study

(10)

(11)

(12)

UNIVERSITÀ

degli Studi di Padova

Model 1_results

Point	ct		Wor	kstatio P	n time [ES	min]		W	orkstatio / orkstati	on maxi ion weig	mum Bo hted Bo	org scol	re 'e
1 01110	PES _{max}	1	2	3	4	5	6	1	2	3	4	5	6
	25.44	25.26	25.44	25.44	25.40	25.42	25.43	5	3	4	7	3	6
1	68	66	45	29	21	20	68	4.0	2.7	3.8	2.1	2.8	5.1
•	25.45	25.39	25.45	25.44	25.38	25.45	25.45	5	3	4	4	3	6
2	53	53	52	29	12	43	38	4.0	2.7	3.8	2.0	3.0	4.8
2	25.48	25.36	25.37	25.46	25.48	25.33	25.42	6	3	4	7	3	5
3	48	48	42	38	25	43	35	4.9	2.8	3.7	1.9	3.0	4.0
4	25.50	25.16	25.50	25.42	25.48	25.46	25.42	6	3	4	7	3	5
-	47	44	36	47	25	45	35	4.9	2.8	3.7	1.9	3.0	4.0
5	25.51	25.26	25.51	25.47	25.48	25.48	25.46	5	3	4	7	3	6
	46	46	39	46	25	32	46	4.2	2.8	3.8	1.9	2.7	5.2
6	25.55	25.16	25.55	25.51	25.48	25.49	25.54	6	3	3	7	3	5
	44	44	42	38	25	42	39	4.9	2.8	3.7	1.9	2.9	4.0
7	25.61	25.61	25.59	25.49	25.52	25.61	25.58	5	3	4	4	3	6
	43	43	43	43	25	35	40	4.3	2.7	3.8	2.2	2.7	5.0
6	25.62	25.60	25.61	25.62	25.62	25.58	25.61	5	3	4	7	3	6
<u>°</u>	42	42	41	42	34	35	40	4.3	2.7	3.7	2.4	2.7	5.0
0	25.72	25.72	25.65	25.71	25.57	25.68	25.57	6	3	3	5	7	4
	40	38	38	36	40	39	39	4.8	2.7	2.7	4.0	2.5	3.8
10	25.74	25.72	25.69	25.67	25.74	25.74	25.70	6	3	3	5	4	4
10	39	38	39	35	38	39	39	4.8	2.8	2.7	3.9	2.5	3.8
11	25.84	25.72	25.84	25.84	25.70	25.69	25.72	6	3	3	5	4	4
	38	38	38	38	36	38	38	4.8	2.7	2.7	4.0	3.7	2.7
12	26.12	25.98	25.98	25.82	26.12	25.91	25.72	4	3	6	5	4	3
12	37	37	37	36	36	37	37	2.9	2.8	5.6	3.7	3.9	2.3
13	28.16	28.16	27.39	28.10	23.96	23.88	24.04	3	4	3	6	4	5
	36	36	35	36	36	36	36	2.6	3.0	2.8	4.5	3.7	4.1

Point	ct	Workstat			ation time [min] PES				Workstation maximum Borg score Workstation weighted Borg score				
	PESmax	1	2	3	4	5	6	1	2	3	4	5	6
1	28.25	28.23	28.25	28.09	20.83	28.12	17.40	4	3	4	4	3	4
1	41	41	40	37	25	36	40	2.69	2.85	3.82	3.21	3	4
•	28.37	28.36	27.91	28.37	23.82	28.12	15.41	4	3	4	4	3	4
2	40	38	40	40	28	36	36	2.65	2.76	3.81	4	2.89	3.31
	29.17	27.61	28.78	28.41	23.82	29.17	15.41	3	4	4	4	3	4
3	39	37	38	37	28	39	36	2.50	3.06	3.48	4	3	3.31
4	31.73	31.59	30.56	9.45	31.64	31.73	15.418	3	4	4	3	4	4
4	38	38	38	36	37	38	36	2.52	3.46	4	2.67	3.78	3.31
5	34.57	29.536	34.57	10.166	23.85	33.9	17.84	4	3	4	4	3	4
5	37	37	37	36	37	37	36	2.79	2.89	4	3.47	2.83	3.40

Model 2

Minimise
$$Cost = \sum_{j} \left[\sum_{t} CT \dot{z}_{jt} + \sum_{w} CW z_{jw} + C_{j} v_{j} \right]$$

$$\sum_{j} \sum_{w} x_{ijw} = 1, \forall i = 1, ..., I$$

$$\sum\nolimits_t \acute{x}_{ijt} \leq \sum\nolimits_w x_{ijw} ~~\forall~i=1,\ldots,I; \forall~j=1,\ldots,J$$

$$x_{ijw} \le z_{jw}, \forall i = 1, \dots, I; \forall j = 1, \dots, J, \forall w = 1, \dots, W$$

$$\dot{x}_{ijt} \leq z_{jt}', \forall \ i = 1, \dots, I; \forall \ j = 1, \dots, J, \forall \ t = 1, \dots, T$$

$$\sum\nolimits_w z_{jw} \leq v_j, \forall \ j = 1, \ldots, J$$

$$\sum_{j} \sum_{w} j x_{ijw} \leq \sum_{j} \sum_{w} j x_{kjw}, \forall (i,k) \in A$$

$$\sum_{i} \sum_{w} \hat{t}_{ijt} x_{ijw} - \sum_{i} \sum_{t} \hat{t}_{ijt} \hat{x}_{ijt} \le \operatorname{ct} * v_{j} \forall j = 1, \dots, J$$

$$\sum\nolimits_{j} z_{jw} \leq 1 \; \forall \; w = 1, \ldots, W$$

$$\sum_{w} z_{jw} \le 1 \forall j = 1, \dots, J$$
⁽¹⁰⁾

$$\sum_{j} \dot{z}_{jt} \le 1 \ \forall \ t = 1, \dots, T \tag{11}$$

$$\sum_{t} \dot{z}_{jt} \leq 1 \; \forall j = 1, ..., J \tag{12}$$

$$x_{ijw} \in \{0; 1\} \forall i = 1, ..., I; \forall j = 1, ..., J, \forall w = 1, ..., W$$
(13)

$$z_{jw} \in \{0; 1\} \forall j = 1, ..., J, \forall w = 1, ..., W$$
(15)

 $z'_{jt} \in \{0, 1\} \forall j = 1, ..., J, \forall t = 1, ..., T$ (16)

۶n.

Model application in case study

The results of the applied model with and without consideration of trainers

<i>ct</i> [min/pc]	Cost	Number of trainer workers	Number of assembler workers	Number of Open stations	Station time $[ST_j]$
25	18.6	2	4	4	[34.904, 34.727, 34.959, 34.835]
35	23	0	5	5	[34.918, 34.908, 34.377, 34.897, 34.939]
40	17.3	1	4	4	[39.872, 38.774, 39.989, 39.581]
40	20	0	5	5	[33.603, 39.391, 39.669, 36.656, 37.956]
45	14.6	2	3	3	[44.62, 44.453, 43.863]
43	16	0	4	4	[44.89, 44.418, 44.994, 44.968]
50	13.3	1	3	3	[49.858, 49.973, 49.963]
50	16	0	4	4	[45.995, 43.145, 49.737, 44.922]
55	13.3	1	3	3	[54.378, 54.638, 51.904]
	16	0	4	4	[46.972, 41.824, 54.255, 46.23]
60	12	0	3	3	[59.732, 59.883, 59.154]
00	12	0	3	3	[59.678, 59.942, 59.84]

(1)

(2)

(3)

(4) (5) (6)

(7)

(8)

(9)

(17)

Integrated model

Minimise ct_1 (1)Minimise $TR = \sum_i \sum_i q_{ii}$ (2) $\sum_{i} \sum_{w} x_{ijw} = 1, \forall i = 1, ..., I$ (3) $\sum_{t} \dot{x}_{ijt} \leq \sum_{w} x_{ijw} \quad \forall i = 1, \dots, l; \forall j = 1, \dots, J^*$ (4) $x_{iiw} \le z_{iw}, \forall i = 1, ..., I; \forall j = 1, ..., J^*, \forall w = 1, ..., W$ (5) $\dot{x}_{iit} \le \dot{z}_{it}, \forall i = 1, ..., I; \forall j = 1, ..., J, \forall t = 1, ..., T$ (6) $\sum_{i} \sum_{w} j x_{ijw} \leq \sum_{i} \sum_{w} j x_{kjw}, \forall (i,k) \in A$ (7) $\sum_{i} \sum_{w} t_{iw} x_{ijw} - \sum_{i} \sum_{t} t_{it} \dot{x}_{ijt} \leq ct_1 \forall j = 1, \dots, J^*$ (8) (9) $\sum_{i} z_{jw} \leq 1 \ \forall \ w = 1, \dots, W$ $\sum_{w} z_{jw} \leq 1 \; \forall \; j = 1, \dots, J^*$ (10) $\sum_{i} \dot{z}_{jt} \le 1 \forall t = 1, \dots, T$ (11) $\sum_{t} \dot{z}_{jt} \le 1 \; \forall \; j = 1, \dots, J^*$ (12) $q_{ij} \geq \sum_{w} x_{ijw} - a_{ij} \forall i = 1,..,I; \forall j = 1,..,J^*$ (13) $x_{iiw} \in \{0, 1\} \forall i = 1, ..., l; \forall j = 1, ..., l^*, \forall w = 1, ..., W$ (14) $\dot{x}_{iit} \in \{0, 1\} \forall i = 1, ..., I; \forall j = 1, ..., J^*, \forall t = 1, ..., T$ (15) $z_{iw} \in \{0, 1\} \forall i = 1, ..., I^*, \forall w = 1, ..., W$ (16) $z_{it}^{'} \in \{0; 1\} \forall j = 1, ..., J^*, \forall t = 1, ..., T$ (17) $q_{ii} \in \{0, 1\} \forall i = 1, ..., l, \forall j = 1, ..., J^*$ (18) $ct_1 \in \mathbb{R}$ (19) $TR \in \mathbb{N}$ (20)

EW ZEALAI

Università degli Studi di Padova

Linearization

Linearization

$$(1 + RA_j) \sum_{i} \sum_{w} t_{iw} x_{ijw} \le ct_1 \forall j = 1, ..., J^*$$
$$RA_j = max \left\{ 0; \frac{\sum_{i} \sum_{w} x_{ijw} e_i}{\sum_{i} \sum_{w} x_{ijw} t_{iw}} - MAEE_w}{MAEE_w - ET_R} \right\} \forall j = 1, ..., J^*$$

RA_j	Rest Allowance
e_i	Energy required to process task <i>i</i>
$MAEE_w$	Maximum Acceptable Energy Expenditure for assembler w
ET_R	Rest Energy-Time ratio (1.86 kcal/min)

MAEE = 0.0016 [(60-0.55 AGE) BW eSilva et al. (2016)

$$\begin{array}{l} N_{i} = \max \left\{ 0; \sum_{i} \sum_{w} x_{iiw} \left(e_{i} - t_{iw} * MAEE_{w} \right) \right\} \forall j = 1, \dots, J^{*} \\ N_{j} \geq 0 \ \forall j = 1, \dots, J^{*} \\ N_{j} \geq \sum_{i} \sum_{w} x_{ijw} \left(e_{i} - t_{iw} * MAEE_{w} \right) \ \forall j = 1, \dots, J^{*} \\ N_{j} \leq UB\gamma_{j} \ \forall j = 1, \dots, J^{*} \\ N_{j} \leq \sum_{i} \sum_{w} x_{ijw} \left(e_{i} - t_{iw} * MAEE_{w} \right) + UB(1 - \gamma_{j}) \ \forall j = 1, \dots, J^{*} \\ N_{j} = \sum_{i} \sum_{w} r_{ijw} \left(MAEE_{w} - ET_{R} \right) * t_{iw} \ \forall j = 1, \dots, J^{*} \\ \gamma_{j} \in \left\{ 0, 1 \right\} \ \forall j = 1, \dots, J^{*} \\ N_{j} \in \mathbb{R}^{+} \ \forall j = 1, \dots, J^{*} \\ r_{ijw} \leq UB * x_{ijw} \ \forall i = 1, \dots, I, \ \forall j = 1, \dots, J^{*}, \forall w = 1, \dots, W \\ r_{ijw} \geq RA_{j} - UB(1 - x_{ijw}) \ \forall i = 1, \dots, J^{*}, \forall w = 1, \dots, W \\ r_{ijw} \in \mathbb{R}^{+} \ \forall i = 1, \dots, I, \ \forall j = 1, \dots, J^{*}, \forall w = 1, \dots, W \end{array}$$

NEW ZEALAND

Integrated model application in small case

•Preassembly

UNIVERSITÀ

DEGLI STUDI

EW ZEALAN

Integrated model application in large case

Università degli Studi

DI PADOVA

Computation time

Computation times of some instances of the three real cases

- The three optimisation model applications have been solved using the **IBM ILOG CPLEX 20.1.0** software set to the default parameters.
- The computational experiments were conducted using a computer with an Intel (R) CoreTM i7-8550U 1.8 GHz and 16 GB RAM.

	ALWARBP			ALWARBP-T			ALWARBP-B			ALWARBP-TB		
Cases	TR	$ct_1[\min/$	CPU/s	TR	$ct_1[min/ma]$	CPU/s	TR	$ct_1[min/ma]$	CPU/s	TR	$ct_1[min/ma]$	CPU/s
		pej			pej			pe			pej	
Case 1	1	1.97	0.10	1	1.81	0.19	16	4.57	1.33	16	3.69	0.35
	24	1.83	0.31	6	1.78	0.54	23	3.14	1.12	19	2.87	0.46
Case 2	1	56.10	0.84	1	53.17	1.65	12	81.73	1.99	12	64.90	3.71
	32	53.57	106	46	47.78	3015	47	59.58	37.48	50	51.77	668
Case 3	1	123.2	0.42	1	115.62	6.2	24	170.58	11.45	24	140.95	23.31
	75	116.5	2504	62	102.70	15115	58	127.83	344.5	58	111.4	3103

Model application in medium case

Case	2
Problem characteristics	Medium
Number of tasks	80
Number of task precedencies	93
CT of the initial design (SALBP) [min]	50.50
Number of workstations and assemblers	6
Number of experienced assemblers	-
Number of low experienced assemblers	3
Number of inexperienced assemblers	3
Number of trainers	2

83	X SALBP
81	ALWARBP
/9 77	ALWARBP - T
75	X ALWARBP - B
73	ALWARBP - TB
75	
- 69	
od 67	
· H 65	
<u> </u>	
t_{10}^{-1}	
59	
57	
55	
53	
51	
49	
47	
45	
	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52
	TR [number]

24 April

Scenarios	Task time	Physical workload	Trainer's contribution	Rest Allowance (RA)
ALWARBP	×			
ALWARBP-T	×		x	
ALWARBP-B	×	x		
ALWARBP-TB	×	×	×	

Model application in medium case

$$(1 + RA_j) \sum_i \sum_w t_{iw} x_{ijw} \le ct_1 \forall j = 1, \dots, J^*$$

$$RA_{j} = max \left\{ 0 ; \frac{\sum_{i} \sum_{w} x_{ijw} e_{i}}{\sum_{i} \sum_{w} x_{ijw} t_{iw}} - MAEE_{w}}{MAEE_{w} - ET_{R}} \right\} \forall j = 1, \dots, J^{*}$$

MAEE = 0.0016 [(60-0.55 AGE) BW eSilva et al. (2016)

RA_j	Rest Allowance
e _i	Energy required to process task <i>i</i>
MAEE _w	Maximum Acceptable Energy Expenditure for assembler w
ET_R	Rest Energy-Time ratio (1.86 kcal/min)

Scenarios	Task time	Physical workload	Trainer's contribution	Rest Allowance (RA)
ALWARBP	×			
ALWARBP-B	x	x		
ALWARBP-RA	x			x

