# Win, lose, or draw? Student responses to lottery scholarship eligibility rules

Christopher Erwin Research Fellow New Zealand Work Research Institute Auckland University of Technology



## Motivation

- Since 1993, 27 U.S. states have launched broad-based merit scholarship programs
  - New Mexico Legislative Lottery Scholarship (NMLLS) in 1997
- Programs generally reward in-state students with "free" college provided they meet certain eligibility criteria
  - For qualified residents only
  - Typically based on high school GPA, standardized test scores, class rank, or some combination



## Motivation

- stated objectives of merit aid vary by state:
  - increase access to higher education for financially constrained students
  - Improve academic performance
  - provide incentive for students to finish high school
  - combat "brain drain"
  - incentivize good students that would have otherwise enrolled at private or out-of-state schools to enroll in-state at public institutions



## Motivation

- How do students respond to scholarship eligibility rules?
  - Do students respond to minimum GPA requirements by increasing their grades?
  - Do students respond to funding caps by reducing time to degree?
  - Are recipients more likely to take the minimum number of credits in order to satisfy scholarship eligibility?
  - Is persistence increased as students put forth efforts to retain funding?



# Background

- New Mexico's program (NMLLS) is the most generous, low-bar merit program in the U.S.
- Only program where eligibility based solely on college performance rather than high school performance
  - NM residency
  - Graduate from a NM high school, and enroll in one of 16 qualified public institutions in the next academic year
  - Free qualifying semester funded by the Bridge to Success Scholarship



# Background

- Initial eligibility:
  - complete at least 12 hours in qualifying semester with 2.5 GPA
- Continued eligibility:
  - complete at least 12 credit hours each term, maintain 2.5 cumulative GPA
- Funding capped at 8 semesters *after* qualifying semester
- More background <u>here</u>; recent changes <u>here</u>



# Background

- No requirements regarding:
  - High school GPA
  - Standardized test scores
  - Class rank
  - Community service hours
  - Citizenship
  - FAFSA-filing



# **Preview of Findings**

- Students respond to scholarship eligibility rules
- Those just above the qualifying semester GPA requirement:
  - complete college in shorter time (i.e., before the semester cap)
  - are more likely to earn the minimum number of credits needed to maintain eligibility in the first year
  - Show no change in persistence, completion likelihood, or grades



## Literature

- Much focuses on enrollments, only a handful of papers on other outcomes...
- Degree completion
  - Studies using census microdata find no effect (Sjoquist and Winters, 2012, 2015; Jia, 2018)
  - Studies using administrative data offer mixed results (Scott-Clayton, 2011; Cohodes and Goodman, 2014; Erwin and Binder, 2018)
- Generally, effects for outcomes using administrative data are dependent on the program's structure



## Literature

- Contribution to literature:
  - Unique program structure: broadest, lowest-bar state merit aid program
    - Every resident "gets a shot"
    - Best proxy for recent proposals for to make college free for the vast majority of students in the U.S.
      - 2016 candidates advocated for making college free for most
      - NY Excelsior Scholarship just launched



## Literature

- Contribution to literature:
  - New Mexico's lottery scholarship has very modest eligibility requirements, so some constraints (e.g., minimum cumulative GPA, "normal progress") may not be binding
  - Identification strategy estimates LATE for lower ability students that responded to the policy change
    - Other studies generally focus on higher ability students (cf. Georgia, Tennessee, Florida, Massachusetts, etc.)



## Data

- Administrative data on all first-time, full-time University of New Mexico (UNM) resident students over the period 1997 – 1999
- 3,499 resident students
  - residents earning a high school equivalency in NM
  - enrolled at UNM in next regular semester
  - earned at least 12 credits during the qualifying semester
  - Meet all criteria except the 2.5 qualifying semester GPA
- Explored later cohorts (2000 2008), but evidence exists that bridging semester GPA began to be manipulated with launch of the Freshmen Learning Community in 2000



| bachelor's degree within (years):<br>4<br>4.5<br>5<br>6      | .164<br>.288<br>.460<br>.558                                                                                    |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| credits earned by year:<br>1<br>2<br>3<br>4<br>5<br>6        | 27.047 (4.121)<br>50.059 (13.801)<br>70.393 (24.575)<br>89.579 (36.041)<br>101.289 (42.199)<br>106.480 (44.785) |
| credits withdrawn in first year                              | 1.856 (2.622)                                                                                                   |
| semesters continuously enrolled<br>last observed college GPA | 6.976 (3.318)<br>2.964 (.697)                                                                                   |
| obs.                                                         | 3,499                                                                                                           |

Table 1. Descriptive statistics, 1997-1999 cohorts

*Source*: Freshmen Tracking System, Office of Institutional Analytics, University of New Mexico. Standard deviations are in parentheses. Descriptives are for the entire sample and are not constrained to those in the immediate neighborhood of the 2.5 qualifying semester GPA cutoff.

| high school GPA                                                                   | 3.435 (.450)                         |
|-----------------------------------------------------------------------------------|--------------------------------------|
| composite ACT                                                                     | 24.002 (3.243)                       |
| required remedial coursework                                                      | .066                                 |
| family income < \$40,000                                                          | .176                                 |
| family income < \$20,000                                                          | .078                                 |
| female                                                                            | .553                                 |
| Hispanic<br>black<br>American Indian<br>Asian<br>declined to state race-ethnicity | .319<br>.017<br>.034<br>.040<br>.014 |
| obs.                                                                              | 3,499                                |

Table 1. Descriptive statistics, 1997-1999 cohorts (continued)

*Source*: Freshmen Tracking System, Office of Institutional Analytics, University of New Mexico. Standard deviations are in parentheses. Descriptives are for the entire sample and are not constrained to those in the immediate neighborhood of the 2.5 qualifying semester GPA cutoff.

# **Empirical Model**

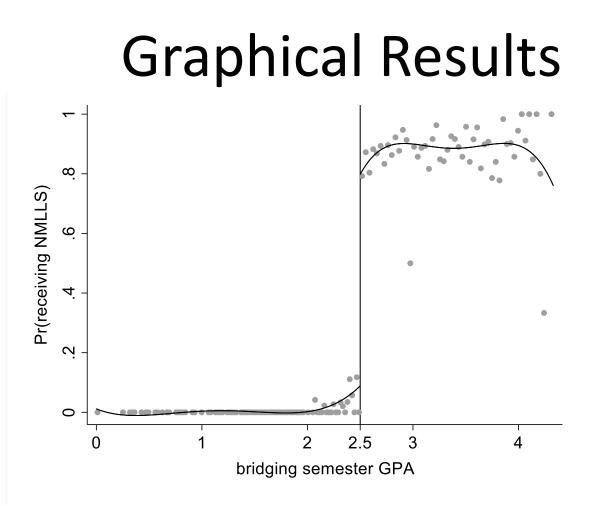
- Fuzzy regression discontinuity (FRD)
  - Exploit a discontinuity in eligibility rules (minimum 2.5 cumulative GPA during the qualifying semester)
- Why not sharp RD?
  - UNM policies allowed exceptions for medical conditions and military service
  - In rare cases, students not meeting GPA requirement could petition on "special circumstances" grounds
  - NMLLS structured as a "last dollar scholarship"



# **Empirical Model**

• 1<sup>st</sup> stage:

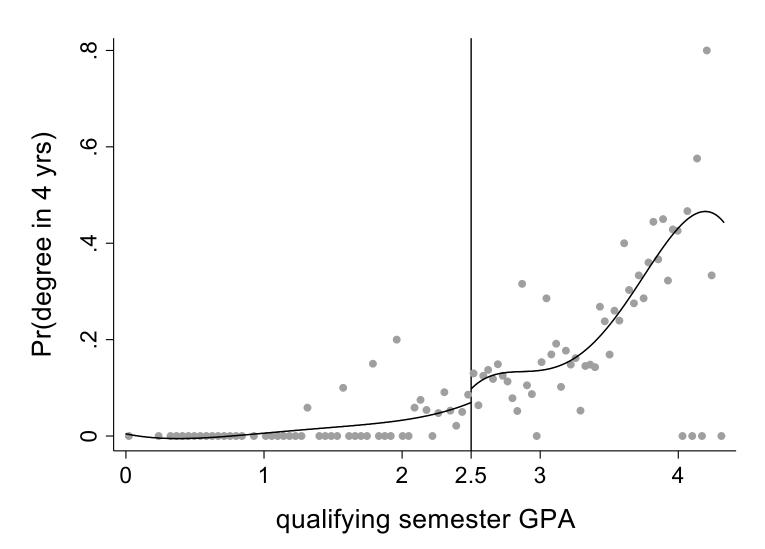
 $NMLLS_{i} = \alpha_{0} + \alpha_{1}Above_{i} + \alpha_{2}GPAgap_{i} * Below_{i} + \alpha_{3}GPAgap_{i} * Above_{i} + X\theta + v_{i}$ 


• 2<sup>nd</sup> stage:

 $Y_{i} = \pi_{0} + \tau_{FRD} N \widehat{MLLS}_{i} + \pi_{1} GPAgap_{i} * Below_{i} + \pi_{2} GPAgap_{i} * Above_{i} + X\Gamma + \varepsilon_{i}$ 

- X includes gender, HSGPA, ACT, race-ethnicity, family income, and whether remedial coursework was required (upon admission)
- $Above_i = 1[GPA_i \ge 2.5]; Below_i = 1[GPA_i < 2.5]$




**RCH INSTITUTE** 



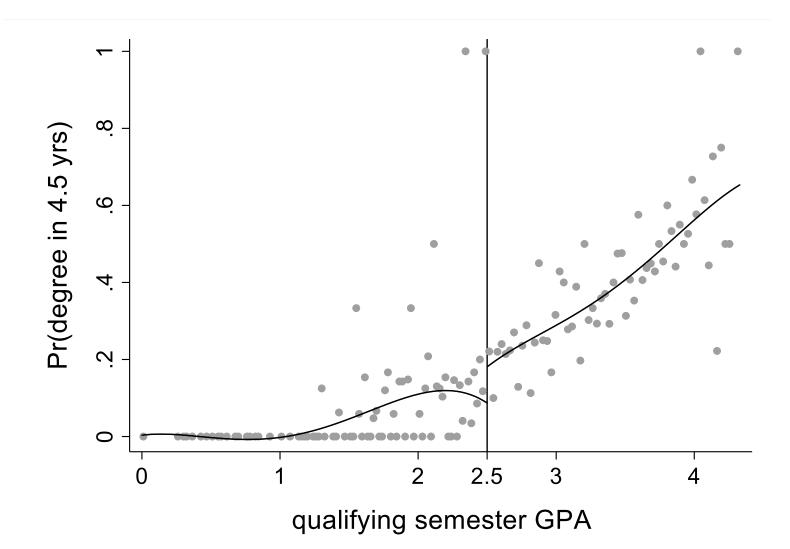
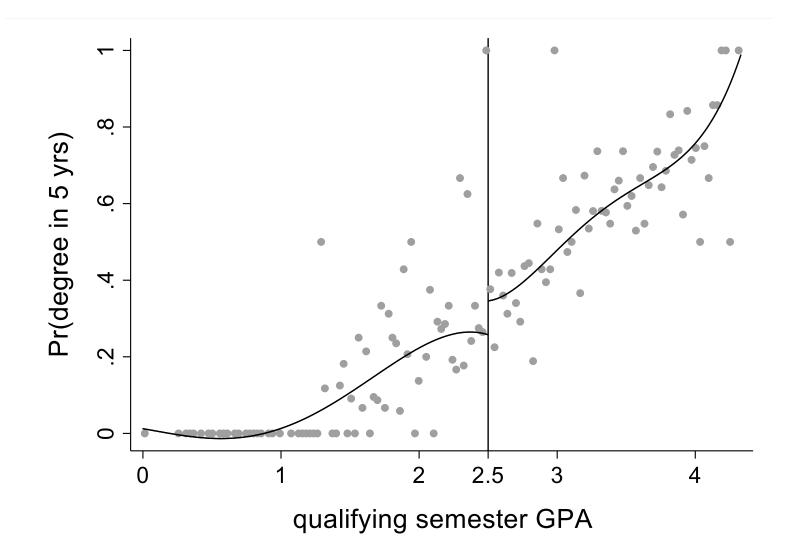
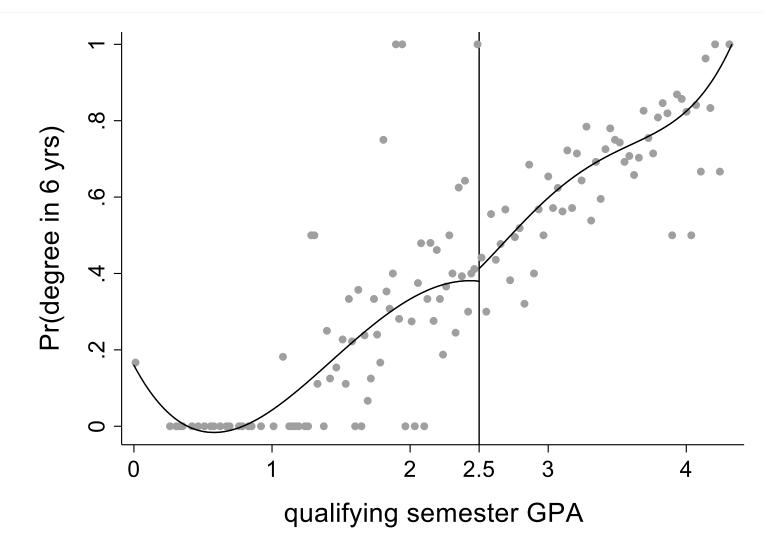

*Note:* Points depict the within-bin sample average of NMLLS receipt probability by bridging semester GPA. A quartic fit has been added below and above the cutoff at 2.5. Binned means of bridging semester GPA with evenly spaced bins are chosen optimally to mimic the variability of the outcome variable. The triangular kernel function is used to construct global polynomial estimators. The plot provides visual evidence of the appropriateness of a fuzzy regression discontinuity approach.

Figure 2. Jump in treatment probability around the bridging semester GPA cutoff, 1997-1999 cohorts


















- Other plots not shown for brevity
  - credits after one year <u>here</u>
  - credits after two years <u>here</u>
  - credits after three years <u>here</u>
  - credits after four years <u>here</u>
  - credits after five years <u>here</u>
  - credits after six years <u>here</u>
  - credits withdrawn in first year <u>here</u>
  - semesters continuously enrolled <u>here</u>
  - last observed college GPA <u>here</u>



|                                                         | (1)                      | (2)                      | (4)                        | (5)                   |
|---------------------------------------------------------|--------------------------|--------------------------|----------------------------|-----------------------|
|                                                         | linear<br>model          | quadratic<br>model       | c = 2.3                    | c = 2.7               |
| <b>first stage: NMLLS eligibility</b><br>robust p-value | <b>.716***</b><br>< .001 | <b>.686***</b><br>< .001 | - <b>.181***</b><br>< .001 | - <b>.075</b><br>.170 |
| degree within four years                                | .074**                   | .080                     | .448                       | .883                  |
| robust p-value                                          | .031                     | .236                     | .662                       | .170                  |
| $N_W^-   N_W^+$                                         | 499   1085               | 545   1244               | 421   1021                 | 474   608             |
| h                                                       | .583                     | .688                     | .679                       | .359                  |
| degree in 4.5 years                                     | .127*                    | .109                     | 035                        | -3.449                |
| robust p-value                                          | .081                     | .275                     | .964                       | .783                  |
| $N_W^-   N_W^+$                                         | 518   1152               | 545   1244               | 336   714                  | 345   337             |
| h                                                       | .647                     | .681                     | .497                       | .210                  |
| degree within five years                                | .091                     | .100                     | .129                       | .591                  |
| robust p-value                                          | .315                     | .415                     | .812                       | .417                  |
| $N_W^-   N_W^+$                                         | 580   1400               | 630   1595               | 258   428                  | 630   952             |
| h                                                       | .759                     | .874                     | .333                       | .512                  |
| degree within six years                                 | .040                     | 0004                     | 113                        | 3.228                 |
| robust p-value                                          | .508                     | .996                     | .753                       | .474                  |
| $N_W^-   N_W^+$                                         | 499   1085               | 583   1432               | 205   319                  | 437   601             |
| h                                                       | .583                     | .778                     | .254                       | .301                  |

Table 2. Estimated local average treatment effects of the NMLLS on degree completion

*Note:* estimates are based on fuzzy regression discontinuity models using the 2.5 GPA cutoff during the student's first semester (i.e., qualifying semester). A triangular kernel is used to construct local polynomial estimators. Common mean squared error-optimal bandwidths, *h*, determine the neighborhood of the GPA cutoff examined. Local linear regression is used to construct point estimators. Robust standard errors are clustered at the cohort-level. \*, \*\*, and \*\*\* denote statistical significance at the ten, five, and one percent-levels, respectively. First-stage results are from models using four-year completion rates.

|                                                  | (1)                      | (2)                      | (4)                        | (5)                   |
|--------------------------------------------------|--------------------------|--------------------------|----------------------------|-----------------------|
|                                                  | linear<br>model          | quadratic<br>model       | c = 2.3                    | c = 2.7               |
| first stage: NMLLS eligibility<br>robust p-value | <b>.669</b> ***<br><.001 | <b>.657***</b><br>< .001 | - <b>.171***</b><br>< .001 | <b>149</b> **<br>.017 |
| credits after one year                           | -1.873*                  | -2.852***                | 2.712                      | 906                   |
| robust p-value                                   | .062                     | .006                     | .620                       | .824                  |
| $N_W^-   N_W^+$                                  | 270   484                | 416   810                | 255   397                  | 560   790             |
| h                                                | .285                     | .467                     | .319                       | .434                  |
| credits after two years                          | 1.617                    | -3.540                   | 5.100                      | 10.077                |
| robust p-value                                   | .438                     | .322                     | .852                       | .543                  |
| $N_W^- N_W^+ $                                   | 255   438                | 273   505                | 205   319                  | 599   839             |
| h                                                | .267                     | .290                     | .256                       | .467                  |
| credits after three years                        | 986                      | -11.053                  | 10.568                     | 119.390               |
| robust p-value                                   | .816                     | .186                     | .753                       | .278                  |
| $N_W^- N_W^+ $                                   | 212   354                | 255   438                | 207   333                  | 466   605             |
| h                                                | .211                     | .268                     | .280                       | .321                  |
| credits after four years                         | .263                     | -10.330                  | -5.580                     | 197.590               |
| robust p-value                                   | .964                     | .223                     | .911                       | .282                  |
| $N_W^-   N_W^+$                                  | 213   358                | 270   484                | 205   319                  | 466   605             |
| h                                                | .227                     | .286                     | .256                       | .321                  |
| credits after five years                         | -1.401                   | -5.780                   | -13.373                    | 131.790               |
| robust p-value                                   | .831                     | .376                     | .857                       | .127                  |
| $N_W^-   N_W^+$                                  | 213   358                | 355   699                | 197   286                  | 523   741             |
| h                                                | .229                     | .382                     | .239                       | .382                  |
| credits after six years                          | -2.928                   | -7.454                   | -10.756                    | 167.760               |
| robust p-value                                   | .547                     | .182                     | .818                       | .149                  |
| $N_W^- N_W^+ $                                   | 179   307                | 270   484                | 207   326                  | 474   608             |
| h                                                | .187                     | .286                     | .266                       | .358                  |
| withdrawals during first year                    | 1.317**                  | 1.707**                  | 1.997                      | -3.357                |
| robust p-value                                   | .024                     | .014                     | .713                       | .920                  |
| $N_W^-   N_W^+$                                  | 270   484                | 467   951                | 258   428                  | 345   420             |
| h                                                | .284                     | .537                     | .335                       | .224                  |

Table 4. Estimated local average treatment effects of the NMLLS on course taking behavior

Note: estimates are based on fuzzy regression discontinuity models using the 2.5 GPA cutoff during the student's first semester at UNM (i.e., qualifying semester). A triangular kernel is used to construct local polynomial estimators. Common mean squared error-optimal bandwidths, *h*, determine the neighborhood of the GPA cutoff examined. Local linear regression is used to construct point estimators. Robust standard errors are clustered at the cohort-level. \*, \*\*, and \*\*\* denote statistical significance at the ten, five, and one percent-levels, respectively.  $N_W^- = \sum_{i=1}^n 1(\vec{r} - h \le R_i < \vec{r})$ ,  $N_W^+ = \sum_{i=1}^n 1(\vec{r} \le R_i \le \vec{r} + h)$ .

|                                                      | (1)             | (2)                | (4)          | (5)           |
|------------------------------------------------------|-----------------|--------------------|--------------|---------------|
|                                                      | linear<br>model | quadratic<br>model | c = 2.3      | c = 2.7       |
| <b>first stage: NMLLS eligibility</b> robust p-value | <b>.702</b> *** | <b>.673</b> ***    | <b>162</b>   | <b>068</b>    |
|                                                      | < .001          | < .001             | .159         | .311          |
| last observed GPA                                    | <b>.121</b>     | <b>.114</b>        | <b>220</b>   | <b>2.974</b>  |
| robust p-value                                       | .151            | .406               | .735         | .233          |
| $N_W^-   N_W^+$                                      | 414   810       | 518   1152         | 295   553    | 466   607     |
| h                                                    | .454            | .641               | .398         | .334          |
| semesters continuously enrolled                      | <b>.551</b>     | <b>.455</b>        | <b>1.422</b> | <b>39.136</b> |
| robust p-value                                       | .103            | .396               | .498         | .483          |
| $N_W^-   N_W^+$                                      | 218   378       | 354   661          | 260   440    | 419   468     |
| h                                                    | .241            | .370               | .348         | .286          |

Table 5. Estimated local average treatment effects of the NMLLS on academic performance

*Note:* estimates are based on fuzzy regression discontinuity models using the 2.5 GPA cutoff during the student's first semester at UNM (i.e., qualifying semester). A triangular kernel is used to construct local polynomial estimators. Common mean squared error-optimal bandwidths, *h*, determine the neighborhood of the GPA cutoff examined. Local linear regression is used to construct point estimators. Robust standard errors are clustered at the cohort-level. \*, \*\*, and \*\*\* denote statistical significance at the ten, five, and one percent-levels, respectively.  $N_W^- = \sum_{i=1}^n 1(\bar{r} - h \le R_i < \bar{r}), N_W^+ = \sum_{i=1}^n 1(\bar{r} \le R_i \le \bar{r} + h).$ 

# Results

- Empirical results confirm significant jump in treatment likelihood of 70% around GPA cutoff
- 7.4 percentage points (45%) and 12.7 percentage points (44%) more likely to graduate within 4 and 4.5 years, respectively
  - Suggests shorter time to degree but no overall change in completion
- Recipients take 1.9 (7%) fewer credits in the first year, explained by 1.3 (71%) more credits withdrawals
- No impact on grades, persistence, overall credit completion, or overall degree completion



- Three different types:
- 1. Estimate models using *faux*-cutoffs of 2.3 and 2.7
  - There should be no discontinuities in the running variable other than at the known cutoff
  - No significant effects using these cutoffs
- 2. Use predetermined control variables as outcomes
  - A priori knowledge there shouldn't be any significance
  - "placebo treatment effects"



| · · ·                                |           |
|--------------------------------------|-----------|
| covariate                            | 1997-1999 |
| high school GPA                      | 101       |
| robust p-value                       | .462      |
| $N_W^-   N_W^+$                      | 315   588 |
| h                                    | .342      |
| composite ACT                        | -1.179    |
| robust p-value                       | .109      |
| $N_W^-   N_W^+$                      | 331   612 |
| h                                    | .356      |
| required remedial coursework         | .042      |
| robust p-value                       | .270      |
| $N_W^-   N_W^+$                      | 416   810 |
| h                                    | .463      |
| family income < \$40,000             | 026       |
| robust p-value                       | .783      |
| $N_W^-   N_W^+$                      | 287   539 |
| h                                    | .322      |
| family income < \$20,000             | .009      |
| robust p-value                       | .763      |
| $N_W^-   N_W^+$                      | 354   661 |
| h                                    | .376      |
| female                               | 113       |
| robust p-value                       | .594      |
| $N_W^-   N_W^+$                      | 130   233 |
| h                                    | .153      |
|                                      |           |
| observations                         | 3499      |
| Note: estimates are based on fuzzy r | egression |

Table 7. Testing for placebo treatment effectsusing predetermined covariates

*Note:* estimates are based on fuzzy regression discontinuity models using the 2.5 GPA cutoff during the student's first semester at UNM (i.e., qualifying semester). A triangular kernel is used to construct local polynomial estimators. Common mean squared error-optimal bandwidths, *h*, determine the neighborhood of the GPA cutoff examined. Local linear regression is used to construct point estimators. Robust standard errors are clustered at the cohortlevel. \*, \*\*, and \*\*\* denote statistical significance at the ten, five, and one percent-levels, respectively.



| covariate                        | 1997-1999  |
|----------------------------------|------------|
| Hispanic                         | 052        |
| robust p-value                   | .736       |
| $N_w^-   N_w^+$                  | 216   375  |
| h                                | .234       |
|                                  |            |
| black                            | 003        |
| robust p-value                   | .672       |
| $N_W^- N_W^+ $                   | 254   435  |
| h                                | .256       |
| Asian                            | .004       |
| robust p-value                   | .728       |
| $N_W^- N_W^+$                    | 416   812  |
| h                                | .473       |
| American Indian                  | 007        |
| robust p-value                   | .746       |
| $N_{W}^{-} N_{W}^{+} $           | 565   1333 |
| h                                | .731       |
| declined to state race-ethnicity | .002       |
| robust p-value                   | .741       |
| $N_W^-   N_W^+$                  | 287   539  |
| h                                | .327       |
| observations                     | 3499       |

Table 7. Testing for placebo treatment effectsusing predetermined covariates (continued)

*Note:* estimates are based on fuzzy regression discontinuity models using the 2.5 GPA cutoff during the student's first semester at UNM (i.e., qualifying semester). A triangular kernel is used to construct local polynomial estimators. Common mean squared error-optimal bandwidths, h, determine the neighborhood of the GPA cutoff examined. Local linear regression is used to construct point estimators. Robust standard errors are clustered at the cohort-level. \*, \*\*, and \*\*\* denote statistical significance at the ten, five, and one percent-levels, respectively.



- 3. Falsification tests of manipulability in the running variable conducted following McCrary (2008)
  - Tests for nonrandom sorting of individuals into treatment (a.k.a. "bunching")
  - Null hypothesis is continuity in the running variable, here qualifying semester GPA

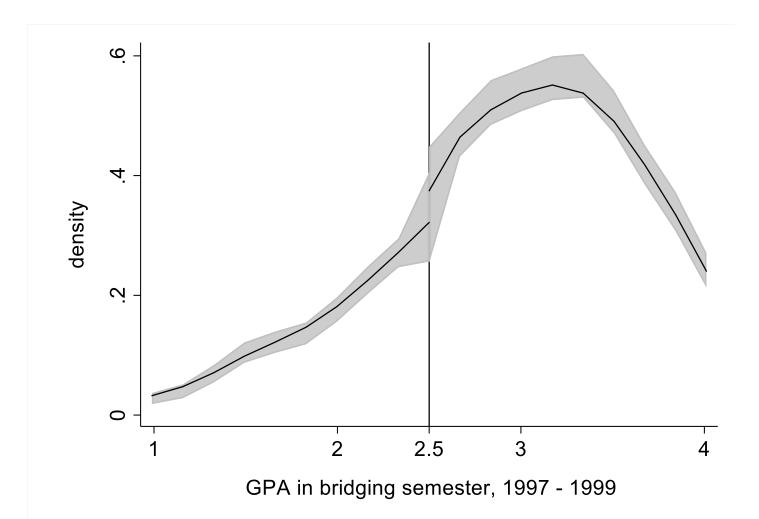



Table 2. Testing for manipulation of the bridging semester GPA cutoff for NMLLS eligibility, 1997 to 1999 cohorts

|                    | bandv | vidths | effective obs. conv. test |       | robust test |         |      |         |
|--------------------|-------|--------|---------------------------|-------|-------------|---------|------|---------|
| $h_{-} \neq h_{+}$ | left  | right  | left                      | right | Т           | p-value | Т    | p-value |
| $T_2(\hat{h}_1)$   | .605  | .557   | 504                       | 952   | 1.168       | .243    | .107 | .915    |
| $T_3(\hat{h}_2)$   | 1.088 | .887   | 697                       | 1632  | .598        | .550    | .208 | .836    |
| $T_4(\hat{h}_3)$   | 1.151 | 1.109  | 736                       | 2040  | .541        | .589    | .090 | .928    |
| $h = h_+$          |       |        |                           |       |             |         |      |         |
| $T_2(\hat{h}_1)$   | .504  | .504   | 467                       | 945   | .813        | .416    | .247 | .805    |
| $T_3(\hat{h}_2)$   | .887  | .887   | 643                       | 1632  | .747        | .455    | .150 | .881    |
| $T_4(\hat{h}_3)$   | 1.109 | 1.109  | 730                       | 2040  | .569        | .569    | .054 | .957    |

*Note:* results from manipulation tests following McCrary (2008) and Cattaneo, Jansson, and Ma (2017) examining 1997 – 1999 cohorts at UNM.  $T_p(h)$  is the manipulation test statistic using the *p*-th order density estimators with bandwidth *h*.  $\hat{h}_p$  denotes the MSE-optimal bandwidths for the *p*-th order density estimator. A triangular kernel is used to construct local polynomial estimators. Tests are performed with identical and different data-driven bandwidths. Conventional and robust test statistics examine the null hypothesis of continuity in the bridging semester GPA around the NMLLS eligibility cutoff.







## Conclusions

- Eligibility rules matter
  - funding caps may serve as an effective policy lever when trying to incentivize students to complete college in a timely manner
  - Students may take the minimum number of hours during a qualifying period when program eligibility is based on college performance
- Future proposals should be cautious and intentional in setting initial eligibility and renewal rules
  - Eligibility rules should directly reflect policy goals of the program (e.g., timely degree completion, high academic achievement, continuous full-time enrollment, etc.)



## Conclusions

 Low-bar merit aid programs not likely to positively impact college persistence, grades, or completion likelihood

- Thank you for your time
- Questions?
- Contact the author at:
  - <u>christopher.erwin@aut.ac.nz</u>

