Using randomly assigned normally distributed draws for estimating Maximum Simulated Likelihood

Otto von Guericke University Magdeburg 23 August 2019

Dr Kabir Dasgupta; Dr Alexander T Plum

Using randomly assigned

 normally distributed dra estimating MaximDr Kabir Dasgupta; Dr Alexander T Plum

NEW ZEALAND
WORK RESEARCH INSTITUTE

Motivation:

- Maximum Simulated Likelihood (MSL): integrating out (multivariate) normal densities
- Approach: simulating likelihood and averaging over these
- What we need: draws from standard uniform density, interval $[0,1)$
- Draws are taken from:
$>$ Pseudorandom number generator (Stata: runiform())
$>$ Quasi-random number generator using prime numbers (Halton draws)
- Today: randomly assigned normally distributed draws (RAND)

Maximum Simulated Likelihood:

- Popularity increased with computational power
- Advantage: flexibility in modelling multivariate normal densities: 'it can be readily applied in conjunction with almost any joint distribution of random parameters' (Hole \& Yoo 2017, p. 998)
- Attention in economic literature:
$>$ Mixed logit models / random parameter logit
$>$ Cappellari \& Jenkins (2008): Low pay - panel retention - employment
$>$ Stewart (2007): heterogeneous slope model
$>$ Cai et al. (2018): NILF, unemployment, self-employment, low pay and higher pay

Maximum Simulated Likelihood:

- Problem: 'likelihood is a multi-dimensional integral which has no closed form expression and needs to be numerically approximated' (Hole \& Yoo 2017, p. 997)
- Why is integrating out possible?
$>$ Sample: $i=1, \ldots N$ individuals, observed $t=1, \ldots, T$ periods
$>$ Example:

$$
y_{i t}=\mathbf{1}\left(x_{i t}^{\prime} \beta+\alpha_{i}+u_{i t}>0\right)
$$

with $\alpha_{i} \sim \operatorname{iid} N\left(0, \sigma_{\alpha}^{2}\right)$ and independent of $x_{i t}$ and $u_{i t}$ for all i, t.
$>u_{i t} \sim N\left(0, \sigma_{u}^{2}\right) \rightarrow$ normalization required, convenient one is $\sigma_{u}^{2}=1$
$>P_{i t}\left(\alpha^{*}\right)=\Phi\left(x_{i t}^{\prime} \beta+\sigma_{\alpha} \alpha^{*}\right)$ and $\alpha^{*}=\alpha / \sigma_{\alpha}$

Maximum Simulated Likelihood:

- Concept of MSL - in plain English
$>\alpha_{i}$ captures individual-specific time-invariant differences like motivation/ability (by definition: completely exogenous)
$>$ Motivation/ability ranges from very low to very high
$>$ For each individual, every possible scenario from very low level of motivation/ability to very high level of motivation/ability is calculated
$>$ There is no link between the individuals' level of motivation/ability; thus, during each scenario, α_{i} is normally distributed

Maximum Simulated Likelihood:

- Concept of MSL:
$>$ Sample size: $N \times T$
$>K$-parameters that need to be integrated out $(k=1, \ldots, K)$
$>$ For each parameter, take $d=1, \ldots, D$ draws from a standard uniform density
$>$ Transform by the inverse standard normal distribution $\left(\Phi^{-1}\right)$

\qquad

ref

（

都

都

號

Maximum Simulated Likelihood:

- Concept of MSL:
$>$ Sample size: $N \times T$
$>k$-parameters that need to be integrated out
$>$ For each parameter, take $d_{i k}=1, \ldots, D$ draws from a standard uniform density
$>$ Transform by the inverse standard normal distribution: $\Phi^{-1}\left(d_{i k}\right)$
$>$ Calculating the likelihood and averaging over all draws
- Requirement: draws are equally distributed within and between individuals
- In most cases: $N>D$, therefore ensuring equal distribution within i is challenging

Halton sequence:

- Halton sequences have certain characteristics that make them favourable compared to pseudorandom number generator
- Halton sequence are based on prime numbers
- K prime numbers are required ($2,3,5,7, \ldots$)
- A sequence consists of the first $N \times D$ entries (excluding burned)
- Example for prime number 2:

$$
>1 / 2,1 / 4,2 / 4,3 / 4,1 / 8,2 / 8,3 / 8,4 / 8,5 / 8,6 / 8,7 / 8, \ldots
$$

3. Halton draws

 . \square -$-$ \square \qquad
\qquad

[^0]
Shapiro-Wilk tests for normality:

- Prime numbers 2 \& 11
- $N=5,000 ; D=50$
- For each individual, applying Shapiro-Wilk test for normality
- Reporting distribution of p - values

位

Randomly assigned normally distributed draws (RAND):

1. Generate $\mathrm{D} \times 2$ matrix $v_{k i}$:

$$
v_{k i}=\left(\begin{array}{cc}
\underbrace{\Phi^{-1}(1 /(D+1))}_{a}+\underbrace{\left(0.5-r_{11}\right) * .001}_{b} & \underbrace{r_{21}}_{c} \\
\vdots & \vdots \\
\Phi^{-1}(D /(D+1))+\left(0.5-r_{1 D}\right) * .001 & r_{2 D}
\end{array}\right)
$$

where $r_{j d}$ with $d=1, \ldots, D$ and $j=\{1,2\}$ are random standard normal distributed numbers

Randomly assigned normally distributed draws (RAND):

1. Generate $\mathrm{D} \times 2$ matrix $v_{k i}$:

$$
v_{k i}=\left(\begin{array}{cc}
\Phi^{-1}(1 /(D+1))+\left(0.5-r_{11}\right) * .001 & r_{21} \\
\vdots & \vdots \\
\Phi^{-1}(D /(D+1))+\left(0.5-r_{1 D}\right) * .001 & r_{2 D}
\end{array}\right)
$$

where $r_{j d}$ with $d=1, \ldots, D$ and $j=\{1,2\}$ are random standard normal distributed numbers
2. Sort $v_{k i}$ according to $r_{2 d}$ in ascending order
3. Generate $\mathrm{RAND}_{k}=\left(v_{k 1}^{\prime}[1 \ldots D, 1] \backslash v_{k 2}^{\prime}[1 \ldots D, 1] \backslash \ldots \backslash v_{k N}^{\prime}[1 \ldots D, 1]\right)$

Simulation I:

- Univariate equation, $N=1000$ and $\mathrm{T}=6$
- 50 replications, $D=\{20,30, \ldots, 100\}$
- Halton draws (prime 2) \& RAND
- $y_{i t}=\mathbf{1}\left(0.5 \tau_{i t}+1+\alpha_{i}+u_{i t}>0\right)$ with $\tau_{i t}, u_{i t}, \alpha_{i} \sim N(0,1)$
$+$

號

Simulation II:

- Bivariate equation, $N=500$ and $\mathrm{T}=6$
- 50 replications, $D=\{15,30,50,100\}$
- Halton draws (prime 2\&3) \& RAND
- $y_{j i t}=\mathbf{1}\left(1+\alpha_{j i}+u_{j i t}>0\right)$ with $u_{j i t} \sim N(0,1), j \epsilon\{1,2\}$ and

$$
V C V=\left(\begin{array}{cc}
\sigma_{\alpha_{1}}^{2} & \\
\rho \sigma_{\alpha_{1}} \sigma_{\alpha_{2}} & \sigma_{\alpha_{1}}^{2}
\end{array}\right) \text { and } \sigma_{\alpha_{j}}^{2}=1 \text { and } \rho=.8
$$

促

5. Sinulation

Draws\square
\square

Empirical example:

- Cappellari \& Jenkins (2007)
- MSL on multivariate normal probabilities
- Probability being unemployed:

$$
P_{i t}=\Phi^{5}\left(x_{i 1}^{\prime} \beta, x_{i 2}^{\prime} \beta, x_{i 3}^{\prime} \beta, x_{i 4}^{\prime} \beta, x_{i 5}^{\prime} \beta\right)
$$

- VCV almost unspecified, 14 parameters estimated $\left(\sigma_{\alpha_{1}}^{2}=1\right)$:

$$
V C V=\left(\begin{array}{ccc}
\sigma_{\alpha_{1}}^{2} & & \\
\vdots & \ddots & \\
\rho_{15} \sigma_{\alpha_{1}} \sigma_{\alpha_{5}} & \cdots & \sigma_{\alpha_{2}}^{2}
\end{array}\right)
$$

6. Empirical example (MVNP)

6. Empirical example (MVNP)

RAND on MSL - Magdeburg (23 Aug 2019)

6. Empirical example (MVNP)

RAND on MSL - Magdeburg (23 Aug 2019)

Conclusion:

- MSL helpful to integrate out multiple integrals
- Advantage is flexibility in modelling multivariate normal densities
- MSL uses random draws from standard uniform density
- Requirement: Equal distribution within and between individuals
- Quasi-random number generator using prime numbers
- Here: Randomly assigned normally distributed draws

Thank you for your attention!

[^0]: (

